A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sato, Y.

 
Paper Title Page
TUOAFI01 Development for New Carbon Cancer-therapy Facility and Future Plan of HIMAC 955
 
  • K. Noda, T. Fujisawa, T. Furukawa, Y. Iwata, T. Kanai, M. Kanazawa, N. Kanematsu, A. Kitagawa, Y. Kobayashi, M. Komori, S. Minohara, T. Murakami, M. Muramatsu, S. Sato, E. Takada, M. Torikoshi, S. Yamada, K. Yoshida
    NIRS, Chiba-shi
  • C. Kobayashi, S. Shibuya, O. Takahashi, H. Tsubuku
    AEC, Chiba
  • Y. Sato, M. Tashiro, K. Yusa
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma
 
  The first clinical trial with carbon beams generated from the HIMAC was conducted in June 1994. The total number of patients treated is now in excess of 2500 as of December 2005. Based on our 10 years of experience with the HIMAC, we have proposed a new carbon-ion therapy facility for widespread use in Japan. The key technologies of the accelerator and irradiation systems for the new facility have been developed since April 2004. The new carbon-therapy facility will be constructed at Gunma University from April 2006. As our future plan for the HIMAC, further, a new treatment facility will be constructed at NIRS from April 2006. The design work has already been initiated and will lead to the further development of the therapy with the HIMAC. The facility is connected with the HIMAC accelerator complex and has two treatment rooms with horizontal and a vertical beam-delivery systems and one room with a rotating gantry. We will report the development for new carbon therapy facility and the design study for new treatment facility with the HIMAC.  
slides icon Transparencies
TUPCH126 Outgassing Rate of Highly Pure Copper Electroplating Applied to RF Cavities 1307
 
  • T. Abe, T. Kageyama, Y. Saito, H. Sakai, Y. Sato, Y. Takeuchi
    KEK, Ibaraki
  • Z. Kabeya, T. Kawasumi
    MHI, Nagoya
  • T. Nakamura, S. Nishihashi, K. Tsujimoto
    Asahi Kinzoku Co., Ltd., Gifu
  • K. Tajiri
    Churyo Engineering Co., Ltd., Nagoya
 
  We plan to apply a new copper electroplating with a high purity and a high electric conductivity to normal-conducting RF cavities for electron or positron storage rings with a high current beam. As reported in 2005 Particle Accelerator Conference, our first test cavity, made of iron, with the electroplated copper surface finished up by electropolishing showed an excellent electric performance compared with the case of cavities made of oxygen free copper. Our next step is to examine the vacuum performance. This paper reports results of the outgassing-rate measurements on our second test cavity together with its fabrication process.  
THPLS036 Results of the Straight-sections Upgrade of the Photon Factory Storage Ring 3365
 
  • T. Honda, S. Asaoka, W.X. Cheng, K. Haga, K. Harada, Y. Hori, M. Izawa, T. Kasuga, Y. Kobayashi, H. Maezawa, A. Mishina, T. Mitsuhashi, T. Miyajima, H. Miyauchi, S. Nagahashi, T. Nogami, T. Obina, C.O. Pak, S. Sakanaka, H. Sasaki, Y. Sato, T. Shioya, M. Tadano, T. Takahashi, Y. Tanimoto, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, S. Yamamoto
    KEK, Ibaraki
 
  At the 2.5-GeV ring of the Photon Factory (PF), a large reconstruction of the lattice around the straight sections* has been accomplished in 2005. As a result, four short straight sections of 1.5 m have been newly created, and the lengths of the existing straight sections have been much improved. For example, the length of the longest straight section has been extended to 9 m from 5 m. The optics has been optimized for installing short-period narrow-gap (in-vacuum) undulators at the new straight sections. The reconstruction work on the ring was held from March to September 2005. In the range over two-thirds of the storage ring, all the quadrupole magnets and all the beam ducts have been renewed and rearranged. Commissioning of the storage ring was started from the end of September 2005 and continued for one month. The operation for the user experiment was resumed from the end of October on schedule. Though we made no in-situ baking after the installation for the beam ducts, the vacuum scrubbing by the synchrotron radiation is running very well. The product of the beam lifetime and the beam current exceeded 700 A min for the operation current 450 mA at the end of December 2005.

*S. Asaoka et al. "New Upgrade Project for the Photon Factory Storage Ring", AIP Conf. Proc. 705, p161 (2004).