A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sagan, D.

Paper Title Page
MOPLS141 The Proposed Conversion of CESR to an ILC Damping Ring Test Facility 891
 
  • M.A. Palmer, R.W. Helms, D. L. Rubin, D. Sagan, J.T. Urban
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • M. Ehrlichman
    University of Minnesota, Minneapolis, Minnesota
 
  In 2008 the Cornell Electron Storage Ring (CESR) will end nearly three decades of providing electron-positron collisions for the CLEO experiment. At that time it will be possible to reconfigure CESR as a damping ring test facility, CesrTF, for the International Linear Collider (ILC) project. With its complement of 12 damping wigglers, CesrTF will offer horizontal emittances in the few nanometer range and, ideally, vertical emittances approaching those specified for the ILC damping rings. An important feature of the CesrTF concept is the ability to operate with positrons or electrons. Positron operation will allow detailed testing of electron cloud issues critical for the operation of the ILC positron damping rings. Other key features include operation with wigglers that meet or exceed all ILC damping ring requirements, the ability to operate from 1.5 to 5.5 GeV beam energies, and the provision of a large insertion region for testing damping ring hardware. We discuss in detail the CesrTF machine parameters, critical conversion issues, and experimental reach for damping ring studies.  
WEPCH150 The Accelerator Markup Language and the Universal Accelerator Parser 2278
 
  • D. Sagan, M. Forster
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • D.A. Bates, A. Wolski
    LBNL, Berkeley, California
  • T. Larrieu, Y. Roblin
    Jefferson Lab, Newport News, Virginia
  • T.A. Pelaia
    ORNL, Oak Ridge, Tennessee
  • S. Reiche
    UCLA, Los Angeles, California
  • F. Schmidt
    CERN, Geneva
  • P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • N.J. Walker
    DESY, Hamburg
 
  A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.  
THPCH024 An Efficient Formalism for Simulating the Longitudinal Kick from Coherent Synchrotron Radiation 2829
 
  • D. Sagan
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
 
  Coherent Synchrotron Radiation (CSR) can severely limit the performance of planned light sources and storage rings which push the envelope to ever higher bunch densities. In order to better simulate CSR, the formalism of Saldin is extended to work at lower energies and shorter length scales. The formalism is also generalized to cover the case of an arbitrary configuration of multiple bends.

*E. L. Saldin et al. Nucl. Instrum. Methods Phys. Res., Sect. A 398, 373 (1997).