A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rouvière, N.

Paper Title Page
TUPCH007 High Resolution BPM for the Linear Colliders 1004
 
  • C. Simon, S. Chel, M. Luong, O. Napoly, J. Novo, D. Roudier
    CEA, Gif-sur-Yvette
  • N. Rouvière
    IPN, Orsay
 
  The beam-based alignment and feedback systems which are essential for the operation of the future colliders use some high resolution Beam Position Monitors (BPM). In the framework of CARE/SRF, the task of CEA/DSM/DAPNIA (Saclay) is the design, the fabrication and the beam test of a BPM in collaboration with DESY. This system is composed of a RF re-entrant cavity with a beam pipe radius of 78mm and an analog electronics having several signal processing steps to reject the monopole mode. Thanks to its high position resolution (better than 1μm) and its high time-resolution (around 10ns), it is a candidate for the X-FEL at DESY and the ILC. Indeed the chosen coupling allows the bunch to bunch measurement and the separation between the monopole and dipole modes. Moreover, this BPM is designed to be used in a clean environment, at the cryogenic and room temperatures.  
MOPLS059 The Probe Beam Linac in CTF3 679
 
  • A. Mosnier, M. Authier, D. Bogard, A. Curtoni, O. Delferriere, G. Dispau, R. Duperrier, W. Farabolini, P. Girardot, M. Jablonka, J.L. Jannin, M. Luong, F. Peauger
    CEA, Gif-sur-Yvette
  • N. Rouvière
    IPN, Orsay
  • R. Roux
    LAL, Orsay
 
  The test facility CTF3, presently under construction at CERN within an international collaboration, is aimed at demonstrating the key feasibility issues of the multi-TeV linear collider CLIC. The objective of the probe beam linac is to "mimic" the main beam of CLIC in order to measure precisely the performances of the 30 GHz CLIC accelerating structures. In order to meet the required parameters of this 200 MeV probe beam, in terms of emittance, energy spread and bunch-length, the most advanced techniques have been considered: laser triggered photo-injector, velocity bunching, beam-loading compensation, RF pulse compression … The final layout is described, and the selection criteria and the beam dynamics results are reviewed.