A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rossi, A.

Paper Title Page
TUPCH183 H2 Equilibrium Pressure in a NEG-coated Vacuum Chamber as a Function of Temperature and H2 Concentration 1444
 
  • A. Rossi
    CERN, Geneva
 
  Non Evaporable Getter (NEG) coating is used in the LHC room- temperature sections to ensure a low residual gas pressure for its properties of distributed pumping, low outgassing and desorption under particle bombardment; and to limit or cure electron cloud build-up due to its low secondary electron emission. In certain regions of the LHC, and in particular close to the beam collimators, the temperature of the vacuum chamber is expected to rise due to energy deposition from particle losses. Gas molecules are pumped by the NEG via dissociation on the surface, sorption at the superficial sites and diffusion into the NEG bulk. In the case of hydrogen, the sorption is thermally reversible, causing the residual pressure to increase with NEG temperature and amount of H2 pumped. Measurements were carried out on a stainless steel chamber coated with TiZrV NEG as a function of the H2 concentration and the chamber temperature, to estimate the residual gas pressure in the collimator regions for various LHC operation scenarios, corresponding to different particle loss rates and times between NEG regenerations. The results are presented in this paper and discussed.  
WEPLS021 The PLASMONX Project for Advanced Beam Physics Experiments 2439
 
  • L. Serafini, A. Bacci, R. Bonifacio, M. Cola, C. Maroli, V. Petrillo, N. Piovella, R. Pozzoli, M. Rome, A.R. Rossi, L. Volpe
    INFN-Milano, Milano
  • D. Alesini, M. Bellaveglia, S. Bertolucci, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, F. Marcellini, M. Migliorati, A. Mostacci, L. Palumbo, L. Pellegrino, M.A. Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • W. Baldeschi, A. Barbini, M. Galimberti, A. Giulietti, A. Gizzi, P. Koester, L. Labate, S. Laville, A. Rossi, P. Tomassini
    CNR/IPP, Pisa
  • U. Bottigli, B. Golosio, P.N. Oliva, A. Poggiu, S. Stumbo
    INFN-Cagliari, Monserrato (Cagliari)
  • C.A. Cecchetti, D. Giulietti
    UNIPI, Pisa
  • D. Levi, M. Mattioli, G. Medici, D. Pelliccia, M. Petrarca
    Università di Roma I La Sapienza, Roma
  • P. Musumeci
    INFN-Roma, Roma
 
  The Project PLASMONX is well progressing into its design phase and has entered as well its second phase of procurements for main components. The project foresees the installation at LNF of a Ti:Sa laser system (peak power > 170 TW), synchronized to the high brightness electron beam produced by the SPARC photo-injector. The advancement of the procurement of such a laser system is reported, as well as the construction plans of a new building at LNF to host a dedicated laboratory for high intensity photon beam experiments (High Intensity Laser Laboratory). Several experiments are foreseen using this complex facility, mainly in the high gradient plasma acceleration field and in the field of mono-chromatic ultra-fast X-ray pulse generation via Thomson back-scattering. We present an innovative scheme of external injection of the SPARC beam into laser wake-field driven plasma waves. Detailed numerical simulations have been carried out to study the generation of short electron bunches, to be injected into plasma waves driven with adiabatically variable density in order to compress the bunch at injection and further accelerate it by preserving a small energy spread and good beam quality.