A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Reiche, S.

Paper Title Page
MOPCH028 Status of the SPARX FEL Project 107
 
  • C. Vaccarezza, D. Alesini, M. Bellaveglia, S. Bertolucci, M.E. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Migliorati, L. Palumbo, L. Pellegrino, M.A. Preger, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stella, F. Tazzioli, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • L. Catani, E. Chiadroni, A. Cianchi, C. Schaerf
    INFN-Roma II, Roma
  • S. Cialdi, C. Maroli, V. Petrillo, M. Rome, L. Serafini
    INFN-Milano, Milano
  • F. Ciocci, G. Dattoli, A. Doria, F. Flora, G.P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, P.L. Ottaviani, G. Parisi, L. Picardi, M. Quattromini, A. Renieri, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • P. Emma
    SLAC, Menlo Park, California
  • L. Ficcadenti, A. Mostacci
    Rome University La Sapienza, Roma
  • M. Mattioli
    Università di Roma I La Sapienza, Roma
  • P. Musumeci
    INFN-Roma, Roma
  • S. Reiche, J.B. Rosenzweig
    UCLA, Los Angeles, California
 
  The SPARX project consists in an X-ray-FEL facility jointly supported by MIUR (Research Department of Italian Government), Regione Lazio, CNR, ENEA, INFN and Rome University Tor Vergata. It is the natural extension of the ongoing activities of the SPARC collaboration. The aim is the generation of electron beams characterized by ultra-high peak brightness at the energy of 1 and 2 GeV, for the first and the second phase respectively. The beam is expected to drive a single pass FEL experiment in the range of 13.5-6 nm and 6-1.5 nm, at 1 GeV and 2 GeV respectively, both in SASE and SEEDED FEL configurations. A hybrid scheme of RF and magnetic compression will be adopted, based on the expertise achieved at the SPARC high brightness photoinjector presently under commissioning at Frascati INFN-LNF Laboratories. The use of superconducting and exotic undulator sections will be also exploited. In this paper we report the progress of the collaboration together with start to end simulation results based on a combined scheme of RF compression techniques.  
MOPCH029 Status of the SPARC Project 110
 
  • P. Musumeci, D. Levi, M. Mattioli, G. Medici, D. Pelliccia, M. Petrarca
    Università di Roma I La Sapienza, Roma
  • D. Alesini, M. Bellaveglia, S. Bertolucci, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, F. Marcellini, M. Migliorati, A. Mostacci, L. Palumbo, L. Pellegrino, M.A. Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, I. Boscolo, F. Broggi, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, M. Mauri, V. Petrillo, M. Rome, A.R. Rossi, L. Serafini
    INFN-Milano, Milano
  • L. Catani, E. Chiadroni, A. Cianchi, E. Gabrielli, S. Tazzari
    INFN-Roma II, Roma
  • F. Ciocci, G. Dattoli, A. Dipace, A. Doria, G.P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, P.L. Ottaviani, S. Pagnutti, L. Picardi, M. Quattromini, A. Renieri, G. Ronci, C. Ronsivalle, M. Rosetti, E. Sabia, M. Sassi, A. Torre, A. Zucchini
    ENEA C.R. Frascati, Frascati (Roma)
  • A. Perrone
    INFN-Lecce, Lecce
  • S. Reiche, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
 
  The SPARC Project is starting the commissioning of its photo-injector. RF gun, RF sources, RF network and control, power supplies, emittance meter, beam diagnostics and control to measure the RF gun beam are installed. The photocathode drive laser has been characterized in terms of pulse shape and quality. We expect to conduct beam measurements at RF gun exit in the next future and consequently to start the installation of accelerating sections. The design of the 12 m undulator for the FEL experiment has been completed and the first undulator section out of 6 is under construction: we expect to characterize it at Frascati ENEA laboratory within the next months. SPARC as a facility will host FEL experiments using SASE, seeding and non-linear resonant harmonics. Additional R&D on X-band and S-band structures for velocity bunching are in progress, as well as studies on new photocathode materials and exotic undulator designs. We also present studies on solenoid field defects, beam based alignments, exotic electron bunch production (blow-out of short laser pulses or intensity modulated laser pulses). The possible use of segmented superconducting micro-undulators will be discussed too.  
WEPCH150 The Accelerator Markup Language and the Universal Accelerator Parser 2278
 
  • D. Sagan, M. Forster
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • D.A. Bates, A. Wolski
    LBNL, Berkeley, California
  • T. Larrieu, Y. Roblin
    Jefferson Lab, Newport News, Virginia
  • T.A. Pelaia
    ORNL, Oak Ridge, Tennessee
  • S. Reiche
    UCLA, Los Angeles, California
  • F. Schmidt
    CERN, Geneva
  • P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • N.J. Walker
    DESY, Hamburg
 
  A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.