A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rehm, G.

Paper Title Page
TUPCH044 Turn-by-turn Data Acquisition and Post-processing for the Diamond Booster and Storage Ring 1103
 
  • R. Bartolini, M.G. Abbott, I.P.S. Martin, G. Rehm, J.H. Rowland
    Diamond, Oxfordshire
 
  The Diamond booster and storage ring are equipped with Libera Electron Beam Position Processors with turn-by-turn capabilities. We describe here the turn-by-turn data acquisition system and the software used for post-processing the beam data. The signals from the Libera boxes are acquired and controlled with EPICS and then transferred to the MATLAB environment via the MATLAB Channel Access. Here they are post-processed using MATLAB capabilities and dedicated software linked to MATLAB. Examples of data acquired and measurements performed during Diamond booster and storage ring commissioning are reported.  
TUPCH045 First Use of Current and Charge Measurement Systems in the Commissioning of Diamond 1106
 
  • A.F.D. Morgan, M.G. Abbott, G. Rehm
    Diamond, Oxfordshire
 
  This paper will discuss the results obtained from the charge and current measurement systems installed in Diamond during the commissioning stage of operation. The charge measurements are gathered from integrating current transformers and Faraday cups, while the current is measured using a DC current transformer in each ring. The measured beam parameters will be investigated, as well as how well the devices performed against expectations.  
TUPCH046 Performance of Global Diagnostics Systems during the Commissioning of Diamond 1109
 
  • G. Rehm, M.G. Abbott
    Diamond, Oxfordshire
 
  This paper summarises data acquired with beam diagnostics systems distributed globally through Diamond's Linac, transfer paths, booster and storage ring. It shows results from the electron beam position monitors using their capabilities to monitor transient events, the booster ramp as well as stored beam. The performance derived from real beam measurements is compared to measurements obtained in the lab using signal and pulse generators. Other systems of widespread use are screens and synchrotron light monitors. Their performance and control system integration based on IEEE1394 camera technology is presented. Finally, first results from the fast and slow beam loss monitoring systems are described.  
TUPCH047 Diamond Optical Diagnostics: First Streak Camera Measurements 1112
 
  • C.A. Thomas, G. Rehm
    Diamond, Oxfordshire
 
  We present in this paper a first set of measurements of the six-dimensional phase-space of the electron beam in the Diamond storage ring. We recall the predicted performance and compare it with our first measurements. The two pinhole cameras measure the beam size, from which we retrieve the energy spread and the emittance of the beam in both horizontal and vertical directions. We have designed a robust and simple UV-visible beamline, to measure the electron bunch profile and length with a streak camera, and to measure the beam quality using a state-of-the-art single photon counting technique.  
THPLS029 Commissioning of the Booster Synchrotron for the Diamond Light Source 3344
 
  • V.C. Kempson, R. Bartolini, C. Christou, J.A. Dobbing, G.M.A. Duller, M.T. Heron, I.P.S. Martin, G. Rehm, J.H. Rowland, B. Singh
    Diamond, Oxfordshire
 
  The Diamond booster is a 158 m circumference, 5 Hz synchrotron which accelerates the 100 MeV electron beam from a linac to 3 GeV for full-energy injection into the Diamond storage ring. The booster has been commissioned in the first few months of 2006, following successful initial 100 MeV trials at the very end of 2005. The injection and ramping process, orbit correction and essential beam physics measurements are discussed as are extraction and beam transport to the storage ring.