A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Reginelli, A.

Paper Title Page
MOPLS095 Investigations of DC Breakdown Fields 777
 
  • T. Ramsvik, S. Calatroni, A. Reginelli, M. Taborelli
    CERN, Geneva
 
  The need for high accelerating gradients for the future 30 GHz multi-TeV e+e- Compact Linear Collider (CLIC) at CERN has triggered a comprehensive study of DC breakdown fields of metals in UHV. The experimental setup is based on a capacitor discharge across a gap junction. The simple design and fully automated computer control enable breakdown fields and dark current of numerous materials to be measured. The study shows that Mo, W and Ti reach high breakdown fields, and are thus good candidates for the iris material of CLIC structures. For untreated Mo the breakdown field is higher than Cu but the conditioning speed is slower. Ti, on the other hand, shows acceptable conditioning speeds, but material erosion makes this solution problematic. Feasible solutions to increase the spark conditioning speed for the case of Mo are presented together with attempts to prevent Ti erosion. For some of the materials studied a significant reduction in the saturated breakdown field was observed upon gas exposure during intensive spark conditioning. As an example, a 50% decrease of the breakdown field of Mo is recorded when spark conditioning is carried out in an environment of 10-5 mbar air.