A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rees, G.

Paper Title Page
MOPCH137 An Anti-symmetric Lattice for High Intensity Rapid-cycling Synchrotrons 369
 
  • J. Wei, Y.Y. Lee, S. Tepikian
    BNL, Upton, Long Island, New York
  • S.X. Fang, Q. Qin, J. Tang, S. Wang
    IHEP Beijing, Beijing
  • S. Machida, C.R. Prior, G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Rapid cycling synchrotrons are used in many high power facilities like spallation neutron sources and proton drivers. In such accelerators, beam collimation plays a crucial role in reducing the uncontrolled beam loss. Furthermore, the injection and extraction section needs to reside in dispersion-free region to avoid couplings; a significant amount of drift space is needed to house the RF accelerating cavities; orbit, tune, and chromatic corrections are needed; long, uninterrupted straights are desired to ease injection tuning and to raise collimation efficiency. Finally, the machine circumference needs to be small to reduce construction costs. In this paper, we present a lattice designed to satisfy these needs. The lattice contains a drift created by a missing dipole near the peak dispersion to facilitate longitudinal collimation. The compact FODO arc allows easy orbit, tune, coupling, and chromatic correction. The doublet straight provides long uninterrupted straights. The four-fold lattice symmetry separates injection, extraction, and collimation to different straights. This lattice is chosen for the Beijing Spallation Neutron Source synchrotron.  
WEPLS010 20 - 50 GeV Muon Storage Rings for a Neutrino Factory 2415
 
  • G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • C. Johnstone
    Fermilab, Batavia, Illinois
  • F. Meot
    CEA, Gif-sur-Yvette
 
  Muon decay ring studies are being undertaken as part of the International Scoping Study (ISS) for a Neutrino Factory. A racetrack and an isosceles triangle shaped ring are under design, initially for a muon energy of 20 GeV, but with an upgrade potential for 50 GeV. Both rings are designed with long straights to optimize directional muon decay. The neutrinos from the muon decays pass to one or two distant detectors; the racetrack ring has one very long production straight, aligned with one detector, while the triangular ring has two straights, each half as long, which can be aligned with two detectors. Lattice studies, injection, collimation, and RF system design for the large acceptance, high intensity rings are discussed and the performance of the two rings compared.  
WEPLS011 General Design Considerations for a High-intensity Muon Storage Ring for a Neutrino Factory 2418
 
  • C. Johnstone
    Fermilab, Batavia, Illinois
  • F. Meot
    CEA, Gif-sur-Yvette
  • G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Muon decay ring design, shielding, and compatibility with potential neutrino detector sites are a critical part of the International Scoping Study (ISS) for a neutrino factory. Two rings are under development: a racetrack and an isosceles-triangle ring initially for muon energy of 20 GeV, but upgradable to 50 GeV. Neutrinos from the muon decays in specially designed production straights can be directed to one or two distant detectors; the racetrack ring has one very long production straight, aligned with one detector, while the triangular ring has two straights, each half as long, aligned with two detectors. An initial site survey of accelerators and distant detectors has been made, along with the required tilt angles from the horizontal will be discussed here. (Lattice studies, injection, collimation, and RF system design are covered in a separate contribution to these proceedings.) Heating and activation effects of beam loss in the chamber walls and components will also be presented.