A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Przybyla, J.S.

Paper Title Page
TUPCH154 RF Amplifier for Next Generation Light Sources 1385
 
  • J.S. Przybyla, E. Radcliffe
    e2v Technologies, Essex
 
  This paper describes the design concepts and development issues around generating a compact 16kW 1.3GHz RF amplifier for use in the next generation of light sources. These amplifiers need to be operated for extended periods to maximise use of the facility and so high reliability and availability are of key importance. Equally important are the capabilities to have extensive self-monitoring and fault prediction, autonomous operation, low heat dissipation to air, and easy maintenance. The design and development of such an RF amplifier based on the latest e2v technologies 1.3GHz inductive output tube (IOT) will be described. The RF amplifier equipment makes extensive use of commercially available products and industry collaborations to produce an amplifier that meets all the requirements yet can be manufactured and operated in a most cost effective manner. Prototype equipment will be shown at EPAC 06.  
WEPLS123 Initial Experimental Results of a New Direct Converter for High Energy Physics Applications 2661
 
  • D. Cook, M. Catucci, J. Clare, P. W. Wheeler
    University of Nottingham, Nottingham
  • C. Oates
    Areva T&D, Stafford
  • J.S. Przybyla, R. Richardson
    e2v Technologies, Essex
 
  This paper presents practical results for a new type of power supply for high energy physics CW applications. The converter is a direct topology operating with a high frequency (resonant) link. Losses are minimised by switching at zero current. High operating frequency reduces the filter and transformer size. The transformer uses the latest nano-crystalline materials to further reduce losses. Where possible, circuit elements are incorporated into the transformer to reduce the physical size of the converter. Design of this transformer to accommodate the insulation, VA rating and circuit elements is non-trivial. The Radio Frequency power generated is stable and predictable, whilst the reduced energy storage in filter components removes the need for crowbar circuits. Potential benefits of this converter when compared to conventional approaches are discussed. These include reduced energy storage, reduced turn-on time and enhanced energy density when compared with existing topologies. Preliminary practical results are promising and are presented along with simulation results.