A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Prior, C.R.

 
Paper Title Page
MOPCH137 An Anti-symmetric Lattice for High Intensity Rapid-cycling Synchrotrons 369
 
  • J. Wei, Y.Y. Lee, S. Tepikian
    BNL, Upton, Long Island, New York
  • S.X. Fang, Q. Qin, J. Tang, S. Wang
    IHEP Beijing, Beijing
  • S. Machida, C.R. Prior, G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Rapid cycling synchrotrons are used in many high power facilities like spallation neutron sources and proton drivers. In such accelerators, beam collimation plays a crucial role in reducing the uncontrolled beam loss. Furthermore, the injection and extraction section needs to reside in dispersion-free region to avoid couplings; a significant amount of drift space is needed to house the RF accelerating cavities; orbit, tune, and chromatic corrections are needed; long, uninterrupted straights are desired to ease injection tuning and to raise collimation efficiency. Finally, the machine circumference needs to be small to reduce construction costs. In this paper, we present a lattice designed to satisfy these needs. The lattice contains a drift created by a missing dipole near the peak dispersion to facilitate longitudinal collimation. The compact FODO arc allows easy orbit, tune, coupling, and chromatic correction. The doublet straight provides long uninterrupted straights. The four-fold lattice symmetry separates injection, extraction, and collimation to different straights. This lattice is chosen for the Beijing Spallation Neutron Source synchrotron.  
TUZAPA02 ISIS Upgrades – A Status Report 935
 
  • D.J.S. Findlay, D.J. Adams, T.A. Broome, M.A. Clarke-Gayther, P. Drumm, D.C. Faircloth, I.S.K. Gardner, P. Gear, M.G. Glover, S. Hughes, H.J. Jones, M. Krendler, A.P. Letchford, E.J. McCarron, S.J. Payne, C.R. Prior, A. Seville, C.M. Warsop
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
 
  Since 2002 several accelerator upgrades have been made to the ISIS spallation neutron source at the Rutherford Appleton Laboratory in the UK, and upgrades are currently continuing in the form of the Second Target Station Project. The paper reviews the upgrade programmes: a new extraction straight, replacement of the Cockcroft-Walton by an RFQ, installation of a second harmonic RF system, replacement and upgrading of installed equipment, design and installation of improved diagnostics in conjunction with beam dynamics simulations, the Second Target Station Project, design and construction of a front end test stand, and the MICE programme. The paper also looks forward to possible future schemes at ISIS beyond the Second Target Station Project.  
slides icon Transparencies