A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pozimski, J.K.

Paper Title Page
MOPCH112 The RAL Front End Test Stand 303
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, D.C. Plostinar, J.K. Pozimski
    CCLRC/RAL, Chilton, Didcot, Oxon
  • J.J. Back
    University of Warwick, Coventry
  • Y.A. Cheng, S. Jolly, A. Kurup, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
 
  High power proton accelerators (HPPAs) with beam powers in the megawatt range have many possible applications including drivers for spallation neutron sources, neutrino factories, waste transmuters and tritium production facilities. These applications typically propose beam powers of 5 MW or more compared to the highest beam power achieved from a pulsed proton accelerator in routine operation of 0.16 MW at ISIS. The UK's commitment to the development of the next generation of HPPAs is demonstrated by a test stand being constructed in collaboration between RAL, Imperial College London and the University of Warwick. The aim of the RAL Front End Test Stand is to demonstrate that chopped low energy beams of high quality can be produced and is intended to allow generic experiments exploring a variety of operational regimes. This paper describes the status of the RAL Front End Test Stand which consists of five main components: a 60 mA H- ion source, a low energy beam transport, a 324 MHz Radio Frequency Quadrupole accelerator, a high speed beam chopper and a comprehensive suite of diagnostics. The aim is to demonstrate production of a 60 mA, 2 ms, 50 pps, chopped H- beam at 3 MeV.  
MOPCH117 Mechanical Design and RF Measurement on RFQ for Front-end Test Stand at RAL 318
 
  • P. Savage, Y.A. Cheng
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    CCLRC/RAL, Chilton, Didcot, Oxon
 
  This paper will present the mechanical design and preliminary results of a RF measurement system for the cold model of a 324MHz 4-vane RFQ, which is part of the development of a proton driver front end test stand at the Rutherford Appleton Laboratory (RAL) in the UK. The design concepts will be discussed and some issues in manufacturing of the RFQ will be pointed out, and specific modifications will be explained. Furthermore, results of thermal simulations of the RFQ will be presented together with RF simulations of the resonant frequency, the Q-value and the longitudinal field distribution.  
TUPCH019 Laser-based Beam Diagnostic for the Front End Test Stand (FETS) at RAL 1037
 
  • C. Gabor
    IAP, Frankfurt-am-Main
  • D.A. Lee
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    CCLRC/RAL, Chilton, Didcot, Oxon
 
  High power proton accelerators (HPPA) are required for several future projects like spallation sources or a neutrino factory. Compared with existing machines the beam power therefore has to be increased by a factor of 30. The Front end test stand at RAL is being built to demonstrate that a chopped Hminus beam of 60 mA at 3 MeV with 50 pps and sufficiently high beam quality, as required for all proposed Proton drivers, can be built. For the test stand a comprehensive set of beam diagnostics is also required. Due to the high beam energy and power non destructive diagnostic methods are favorable. Hminus beams offer the possibility to use intense laser light to detach the additional electron and use the produced particles for beam diagnostics. The principle is appropriate to determine the transversal beam density distribution as well as the transversal and longitudinal beam emittance in front and behind the RFQ. A detailed layout of the beam diagnostics including a discussion of the predicted spatial and temporal resolution and the dynamic range of the proposed devices will be presented.  
TUPLS090 LEBT Simulations and Ion Source Beam Measurements for the Front End Test Stand (FETS) 1714
 
  • S. Jolly, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • J.J. Back
    University of Warwick, Coventry
  • D.C. Faircloth, A.P. Letchford
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    CCLRC/RAL, Chilton, Didcot, Oxon
 
  The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL) is intended to demonstrate the early stages of acceleration (0-3MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. Optimisation of the beam focussing within the Low Energy Beam Transport (LEBT) is necessary to minimise beam losses upon acceleration within the FETS RadioFrequency Quadrupole (RFQ). Simulations of the LEBT are currently under way using the General Particle Tracer package (GPT). Previous envelope calculations suggest weak and strong focussing solutions for the LEBT solenoids. Definitive beam dynamics simulations in GPT require further measurements of the transverse emittances and beam profile of the ion source beam, due to the sensitivity of the simulations on the initial beam profile and level of space charge compensation. A pepperpot emittance/profile measurement system has been designed for use on the ISIS ion source development rig. Results from this pepperpot system are used to constrain the initial conditions for the GPT simulations.