A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Poseryaev, A.V.

Paper Title Page
WEPCH041 Analytic Study of Longitudinal Dynamics in Race-track Microtrons 2008
 
  • Yu.A. Kubyshin
    UPC, Barcelona
  • A.V. Poseryaev, V.I. Shvedunov
    MSU, Moscow
 
  Implementation of low energy injection schemes in the race-track microtron (RTM) design requires a better understanding of the longitudinal beam dynamics. Differently to the high energy case a low-energy beam will slip in phase relative to the accelerating structure phase. We generalize the concept of equilibrium or synchronous particle for the case of non-relativistic energies and introduce the notion of transition energy for RTMs. An analytical approach for the description of the synchronous phase slip is developed and explicit, though approximate, formulas which allow to define the equilibrium injection phase and fix the parameters of the accelerator are derived. The approximation can be improved in a systematic way by calculating higher order corrections. The precision of the analytical approach is checked by direct numerical computations using the RTMTrace code and was shown to be quite satisfactory. Explicit examples of injection schemes and fixing of RTM global parameters are presented.  
WEPCH175 Design of 12 MEV RTM for Multiple Applications 2340
 
  • A.V. Poseryaev, V.I. Shvedunov
    MSU, Moscow
  • M.F. Ballester, Yu.A. Kubyshin
    UPC, Barcelona
 
  Design of a compact 12 MeV race-track microtron (RTM) is described. The results of operating wavelength choice, accelerating structure and end magnets optimization and beam dynamics simulation are represented. Use of a C-band linac and rare earth permanent magnet end magnets permit to design RTM, which is more compact and more effective as compared with the same energy circular microtron or linac. Electron beam with energy 4-12 MeV in 2 MeV step can be extracted from RTM. The estimated pulsed RF power required for feeding the linac is about 800 kW, total mass of accelerator is less than 40 kg and its dimensions are about 500x200x110 mm3.