A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Piminov, P.A.

Paper Title Page
MOPLS134 Minimizing Emittance for the CLIC Damping Ring 870
 
  • H.-H. Braun, M. Korostelev, D. Schulte, F. Zimmermann
    CERN, Geneva
  • E.B. Levitchev, P.A. Piminov, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk
 
  The CLIC damping rings aim at unprecedented small normalized equilibrium emittances of 3.3 nm vertical and 550 nm horizontal, for a bunch charge of 2.6 109 particles and an energy of 2.4 GeV. In this parameter regime the dominant emittance growth mechanism is intra-beam scattering. Intense synchrotron radiation damping from wigglers is required to counteract its effect. Here the overall optimization of the wiggler parameters is described, taking into account state-of-the-art wiggler technologies, wiggler effects on dynamic aperture, and problems of wiggler radiation absorption. Two technical solutions, one based on superconducting magnet technology and the other on permanent magnets, are presented. Although dynamic aperture and tolerances of this ring design remain challenging, benefits are obtained from the strong damping. Only bunches for a single machine pulse need to be stored, making injection/extraction particularly simple and limiting the synchrotron-radiation power. With a 360 m circumference, the ring remains comparatively small.  
WEPCH085 Algorithms for Chromatic Sextupole Optimization and Dynamic Aperture Increase 2116
 
  • E. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk
 
  Strong chromatic sextupoles compensating natural chromaticity of a storage ring may reduce dynamic aperture drastically. In the case of several sextupole families, one can find a lot of ways to correct chromaticity, which provides different sizes of the dynamic aperture. Finding a solution that gives the largest dynamic aperture is an important task for the storage ring design and operation. The paper discusses several approaches to sextupole arrangement optimization in order to obtain a large dynamic aperture.  
MOPLS028 DAFNE Status Report 604
 
  • A. Gallo, D. Alesini, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, B. Buonomo, A. Clozza, G.O. Delle Monache, E. Di Pasquale, G. Di Pirro, A. Drago, A. Ghigo, S. Guiducci, M. Incurvati, P. Iorio, C. Ligi, F. Marcellini, C. Marchetti, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, L. Quintieri, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • G. Benedetti
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • L. Falbo
    INFN-Pisa, Pisa
  • J.D. Fox, P. Raimondi, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
 
  The operation of DAFNE, the 1.02 GeV c.m. e+e- collider of the Frascati National Laboratory with the KLOE detector, started in April 2004 has been concluded at the end of March 2006 with a total delivered luminosity of 2 fb-1 on the peak of the Phi resonance, 0.2 fb-1 off peak and a high statistics scan of the resonance. The best performances of the collider during this run have been a peak luminosity of 1.5 1032 cm-2s-1 and a daily delivered luminosity of 10 pb-1. The KLOE detector has been removed from one of the two interaction regions and its low beta section substituted with a standard magnetic structure, allowing for an easy vertical separation of the beams, while the FINUDA detector has been moved onto the second interaction point. Several improvements on the rings have also been implemented and are described together with the results of machine studies aimed at improving the collider efficiency and testing new operating conditions.