A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pattalwar, S.M.

Paper Title Page
MOPCH187 Key Cryogenics Challenges in the Development of the 4GLS 499
 
  • R. Bate, R.K. Buckley, A.R. Goulden, C. Hodgkinson, S.M. Pattalwar
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  The fourth generation light source (4GLS) is a uniquely flexible source of ultra-high brightness continuous and pulsed radiation covering the IR to XUV range of the spectrum. It is the first light source in the world that is planned from the outset to be a multi-user, multi-source facility combining ERL (energy recovery LINAC) and FEL (free electron laser) technology. 4GLS will require six different sets of superconducting LINACs. Each of the LINAC modules consists of 2 to 7, 1.3 GHz superconducting RF cavities of the TESLA design operating at 1.8 K. The overall cooling power necessary to cool the cavities is estimated to be around 2.5KW demanding the superfluid liquid helium flow rates in excess of 200g/s. Even though the technology of the superconducting RF cavities is somewhat well understood, the design and subsequent operation of the cryogenic system / Cryo modules is an extremely complex task. In this paper we describe the key cryogenic challenges of the 4GLS project and our approach in identifying solutions to meet them.