A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Park, K.-H.

Paper Title Page
TUPCH070 Development of Beam Profile Monitor for Cyclotron 1169
 
  • K.-H. Park, S.-M. Hong, Y.G. Jung, D.E. Kim, H.-G. Lee, W.W. Lee
    PAL, Pohang, Kyungbuk
  • D.H. An, J.-S. Chai, Y.S. Kim
    KIRAMS, Seoul
  • B.-K. Kang
    POSTECH, Pohang, Kyungbuk
 
  A beam profile monitor was designed and fabricated to measure the beam shape of the cyclotron MC50 beam line at KIRAMS. The sensor module was made of 13 tungsten wires and they were assembled into an array type. The sensor wires whose diameter is 1 mm were placed in parallel with the incident beam, while they were placed in the perpendicular direction to the incident beam in the conventional method. Thus this monitor has a linear actuator to scan whole beam profile, which moves the sensor module from the dormant to measurement position or vice versa. The current output of each sensor was amplified using a trans-resistance amplifier which can measure input current in the range of 1 pA. The amplifier had a resolution of ~ 20 fA, the temperature drift of ~0.5 pA/°C, and the signal-to-noise ratio greater than 80 dB. Various test results of the amplifier and sensor module assembly are given in this paper. The measured current profiles of cyclotron beam line at KIRAMS are also given.  
WEPLS131 Programmable Power Supply for Distribution Magnet for 20-MeV PEFP Proton Linac 2682
 
  • S.-H. Jeong, J. Choi, H.-S. Kang, D.E. Kim, K.-H. Park
    PAL, Pohang, Kyungbuk
 
  The distribution magnet is powered by bipolar switching-mode converter that is employed IGBT module and has controlled by a DSP (Digital Signal Process). This power supply is operated at 350A, 5 Hz programmable stair output for beam distribution to 5 beamlines of 20-MeV PEFP proton linac. Various applications for the different power supply are made simple by software. This paper describes the design and test results of the power supply.  
THPLS132 Physics Requirement of a PLS-XFEL Undulator 3592
 
  • D.E. Kim, C.W. Chung, I.S. Ko, J.-S. Oh, K.-H. Park
    PAL, Pohang, Kyungbuk
 
  Pohang Accelerator Laboratory(PAL)is planning a 0.3nm SASE (Self Amplification of Spontaneous Emission) XFEL based on a 3.7GeV linear accelerator. For short saturation length, application of the SPring8 type in the vacuum undulator is needed. This reflects the experiences from the Spring8 SCSS project. The end structures were designed to be asymmetric along the beam direction to ensure systematic zero 1st field integral. The thickness of the last magnets was adjusted to minimize the transition distance to the fully developed periodic field. This approach is more convenient to control than adjusting the strength of the end magnets. The final design features 4mm minimum pole gap, 15mm period, and peak effective field of 1.09 Tesla. In this article, the physical design of the undulator, the design of the end structure, and the physics requirements of the undulator system will be presented.