A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Paparella, R.

 
Paper Title Page
TUYPA02 High Precision SC Cavity Alignment Diagnostics with HOM Measurements 920
 
  • J.C. Frisch, L. Hendrickson, J. May, D.J. McCormick, S. Molloy, M.C. Ross, T.J. Smith
    SLAC, Menlo Park, California
  • N. Baboi, O. Hensler, L.M. Petrosyan
    DESY, Hamburg
  • N.E. Eddy, S. Nagaitsev
    Fermilab, Batavia, Illinois
  • O. Napoly, R. Paparella, C. Simon
    CEA, Gif-sur-Yvette
 
  Experiments at the TTF at DESY have demonstrated that the Higher Order Modes induced in Superconducting Cavities can be used to provide a variety of beam and cavity diagnostics. The centers of the cavities can be determined from the beam orbit which produces minimum power in the dipole HOM modes. The phase and amplitude of the dipole modes can be used as a high resolution beam position monitor, and the phase of the monopole modes to measure the beam phase relative to the accelerator RF. Beam orbit feedback which minimizes the dipole HOM power in a set of structures has been demonstrated. For most SC accelerators, the existing HOM couplers provide the necessary signals, and the downmix and digitizing electronics are straightforward, similar to those for a conventional BPM.  
slides icon Transparencies
MOPCH171 ILC Coaxial Blade Tuner 466
 
  • C. Pagani, A. Bosotti, P. Michelato, N. Panzeri, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI)
 
  A coaxial (blade) tuner solution has been developed for the compensation of the Lorentz force detuning of the superconducting cavities under the high gradient pulsed operation foreseen for ILC operation. The device is based on prototypes successfully tested at DESY in 2002 both on CHECHIA and on the superstructures inserted in the TTF string. During both tests the blade tuner performed as expected in terms of stiffness, frequency sensitivity and tuning capabilities. An improvement of the tuner characteristics has been designed by the integration of fast tuning capabilities by means of piezo-ceramic element. Two prototipes of the new INFN coaxial piezo blade tuner have just been manufactured and they will be tested at DESY and BESSY after the cavity integration. In this paper the blade tuner design and main characteristics are presented, together with the early interpretation of the cold test results.