A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Oerter, B.

Paper Title Page
MOPLS024 RHIC Performance as Polarized Proton Collider in Run-6 592
 
  • V. Ptitsyn, L. Ahrens, M. Bai, D.S. Barton, J. Beebe-Wang, M. Blaskiewicz, A. Bravar, J.M. Brennan, K.A. Brown, D. Bruno, G. Bunce, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, A.V. Fedotov, W. Fischer, G. Ganetis, H. Hahn, T. Hayes, H.-C. Hseuh, H. Huang, P. Ingrassia, D. Kayran, J. Kewisch, R.C. Lee, V. Litvinenko, A.U. Luccio, Y. Luo, W.W. MacKay, Y. Makdisi, N. Malitsky, G.J. Marr, A. Marusic, R.J. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, F.C. Pilat, P.H. Pile, T. Roser, T. Russo, J. Sandberg, T. Satogata, C. Schultheiss, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
  The Relativistic Heavy Ion Collider in Run-6 was operating in polarized proton mode. With two Siberian Snakes per ring, the polarized protons were brought into collisions at 100 Gev and 31.2 Gev energies. The control of polarization orientation at STAR and PHENIX experiments was done using helical spin rotators. Physics studies were conducted with longitudinal, vertical and radial beam polarization at collision points. This paper presents the performance of RHIC as a polarized proton collider in the Run-6 with emphasis on beam polarization and luminosity issues.  
MOPLS025 Experience in Reducing Electron Cloud and Dynamic Pressure Rise in Warm and Cold Regions in RHIC 595
 
  • S.Y. Zhang, L. Ahrens, J.G. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, R. Connolly, K.A. Drees, W. Fischer, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, R.C. Lee, V. Litvinenko, W.W. MacKay, C. Montag, T. Nicoletti, B. Oerter, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, L. Snydstrup, S. Tepikian, P. Thieberger, D. Trbojevic, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Significant improvement has been achieved for reducing electron cloud and dynamic pressure rise at RHIC over several years; however, there remain to be factors limiting luminosity. The large scale application of non-evaporable getter (NEG) coating in RHIC has been proven effective in reducing electron multipacting and dynamic pressure rise. This will be reported together with the study of the saturated NEG coatings. Since beams with increased intensity and shorter bunch spacing became possible in operation, the electron cloud effects on beam, such as the emittance growth,are an increasing concern. Observations and studies are reported. We also report the study results relevant to the RHIC electron cloud and pressure rise improvement, such as the effect of anti-grazing ridges on electron cloud in warm sections, and the effect of pre-pumping in cryogenic regions.