A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Nutarelli, D.

Paper Title Page
MOPCH004 Coherent Harmonic Generation Experiment on UVSOR-II Storage Ring 50
 
  • M. Labat
    CEA, Gif-sur-Yvette
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • T. Hara
    RIKEN Spring-8 Harima, Hyogo
  • M. Hosaka, M. Katoh, A. Mochihashi, M. Shimada, J. Yamazaki
    UVSOR, Okazaki
  • G. Lambert
    RIKEN Spring-8, Hyogo
  • D. Nutarelli
    LAC, Orsay
  • Y. Takashima
    Nagoya University, Nagoya
 
  Harmonic Generation schemes on Free Electron Laser devices are very promising. The injection of a traditional laser source inside the first undulator leads to an efficient energy modulation of the electron bunch, and therefore, its spatial modulation, resulting in a more coherent light emission along the second undulator. Experiments have been performed on the UVSOR-II Storage Ring at Okazaki (Japan) with electrons stored at an energy of 600 MeV, and using a 2.5 mJ Ti:Sa laser at 800 nm wavelength, 1 kHz repetition rate, and 100 fs up to 2 ps pulse duration. The experimental setup is presented, including the transport alignment and synchronisation between the laser and the electron beam. The third harmonic at 266 nm has been characterised versus various parameters: current, RF cavity voltage, undulator gap, magnetic functions of the storage ring, and laser pulse duration. Those results are compared with theory via analytical models and simulations.  
MOPCH002 Seeding the FEL of the SCSS Phase 1 Facility with the 13th Laser Harmonic of a Ti: Sa Laser Produced in Gas 44
 
  • G. Lambert, M. Bougeard, W. Boutu, P. Breger, B. Carré, D. Garzella, M. Labat, H. Merdji, P. Monchicourt, P. Salieres
    CEA, Gif-sur-Yvette
  • O.V. Chubar, M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • T. Hara, H. Kitamura, T. Shintake
    RIKEN Spring-8 Harima, Hyogo
  • D. Nutarelli
    LAC, Orsay
 
  A seeding configuration, in which the 13th harmonic (60 nm) of a Ti: Sa laser (50 mJ, 10 Hz, 130 fs) generated in a gas cell is used as the external source, will be tested in 2006 on the SCSS test facility (SPring-8 Compact Sase Source, Japan). This facility is based on a thermionic cathode electron gun (1 nC of bunch charge), a C-band LINAC (5712 MHz, 35 MV/m) and two in-vacuum undulators (15 mm of period). The maximum electron beam energy is 250 MeV and the SASE emission from visible to 60 nm can be obtained. The High order Harmonic Generation (HHG) experiment was mounted off-line at the end of last December. A first chamber is dedicated to harmonic generation. A second one is used for spectral selection and adaptation of the harmonic waist in the modulator. The tests are performed in Saclay with the LUCA (Laser Ultra Court Accordable) laser (15 mJ, 10 Hz, 50 fs) from January to March at 266 nm, 160 nm and 60 nm and its results are presented here. Also, before performing the real tests in SPring-8 FEL presence, final theoretical estimations of the performances relying on 1D simulations using PERSEO code and 3D simulations using GENESIS and SRW codes are given.  
MOPCH005 The ARC-EN-CIEL FEL Proposal 53
 
  • M.-E. Couprie, C. Bruni, O.V. Chubar, A. Loulergue, L. Nahon
    SOLEIL, Gif-sur-Yvette
  • B. Carré, D. Garzella, M. Jablonka, M. Labat, G. Lambert, F. Meot, P. Monot, A. Mosnier
    CEA, Gif-sur-Yvette
  • J.-R. Marquès
    LULI, Palaiseaux
  • D. Nutarelli
    LAC, Orsay
  • J.-M. Ortega
    CLIO/ELYSE/LCP, Orsay
 
  ARC-EN-CIEL (Accelerator-Radiation Complex for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate (1 kHz). Electron beam calculations will be presented. The FEL is based on the injection of High Harmonics Generated in Gases (HHG) in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonics reproduces the good longitudinal and transverse coherence of the harmonics in gas. Calculations are preformed with PERSEO, taking into account the proper transverse overlap between HHG and the electron beam, and with SRW. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron infrared Coherent Synchrotron Radiation sources, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerat