A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Napieralski, A.

Paper Title Page
THPCH175 Automatic Resonant Excitation Based System for Lorentz Force Compensation for Flash 3206
 
  • P.M. Sekalski, A. Napieralski
    TUL-DMCS, Lodz
  • S. Simrock
    DESY, Hamburg
 
  The cavity is the key element of each linear accelerator used for high-energy physics purpose. The resonant frequency of cavities depends on its shape. Due to the pulse operation, they are deformed by dynamic Lorentz force (LF) caused by accelerating electromechanical field. As a consequence, the cavities are not working on resonance but they are detuned from master oscillator frequency by few hundreds of Hertz depending on accelerating field gradient. The paper presents an automatic control system for LF compensation applied to fast tuning mechanism CTS. The active element is multilayer low-voltage piezoelectric stack (EPCOS). The resonant excitation with adaptive feed forward algorithm is used to drive the actuator. Test performed at FLASH (former name VUV-FEL) on cav5/ACC1 showed that detuning during flat-top period (800us) might remain below 10Hz for accelerating field gradient of 20MV/m.