A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Mete, Ö.M.

Paper Title Page
MOPCH043 An Optimization Study for an FEL Oscillator at TAC Test Facility 136
 
  • Ö.M. Mete, Ö. Karsli, O. Yavas
    Ankara University, Faculty of Engineering, Tandogan, Ankara
 
  Recently, conceptual design of the Turkic Accelerator Center (TAC) proposal was completed. The main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by the Turkish government. It is planned that the Technical Design Report of TAC will have been written in the next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeV electron energies will be used to obtain infrared FEL. The main parameters of the electron linacs, the optical cavities and the FEL were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were discussed.  
MOPLS103 A High-gradient Test of a 30 GHz Molybdenum-iris Structure 801
 
  • W. Wuensch, C. Achard, H.-H. Braun, G. Carron, R. Corsini, S. Doebert, R. Fandos, A. Grudiev, E. Jensen, T. Ramsvik, J.A. Rodriguez, J.P.H. Sladen, I. Syratchev, M. Taborelli, F. Tecker, P. Urschütz, I. Wilson
    CERN, Geneva
  • H. Aksakal
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • Ö.M. Mete
    Ankara University, Faculty of Engineering, Tandogan, Ankara
 
  The CLIC study is investigating a number of different materials as part of an effort to find ways to increase achievable accelerating gradient. So far, a series of rf tests have been made with a set of identical-geometry structures: a tungsten-iris 30 GHz structure, a molybdenum-iris 30 GHz structure and a scaled molybdenum-iris X-band structure. A second molybdenum-iris 30 GHz structure of the same geometry has now been tested in CTF3 with pulse lengths up to 350 ns. The new results are presented and compared to those of the previous structures to determine dependencies of quantities such as accelerating gradient, material, frequency, pulse length, power flow, conditioning rate and breakdown rate.