A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lopes, M.L.

Paper Title Page
WEPLS080 Magnets for the Storage Ring ALBA 2562
 
  • M. Pont
    ALBA, Bellaterra
  • E. Boter, M.L. Lopes
    CELLS, Bellaterra (Cerdanyola del Vallès)
 
  The Storage Ring ALBA is a 3.0 GeV synchrotron light source under construction in Barcelona (Spain). The Storage Ring, has a circumference of 268.8 m and comprises 32 combined magnets, 112 quadrupoles, and 120 sextupoles. This paper will describe the design and the present state of these magnets. The combined magnet has a central field of 1.42 T and a large gradient of 5.65 T/m, since most of the vertical focusing happens at these combined magnets. The 112 quadrupoles have been designed for a maximum gradient of 22 T/m. The bore diameter will be 61 mm and the lengths range from 200 to 500 mm. Each quadrupole will be individually powered. The 120 sextupoles are divided in 9 families. There are two lengths of sextupoles 150 and 220 mm and the maximum sextupole gradient is 600 T/m2. The bore diameter is 76 mm. The sextupole magnets will also be equipped with additional coils for vertical steering, horizontal steering and quadrupolar skew correction.  
THPLS057 Injector Design for ALBA 3413
 
  • M. Pont, G. Benedetti, D. Einfeld, A. Falone, U. Iriso, M.L. Lopes, M. Muñoz
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • E. Al-Dmour, F. Pérez
    ALBA, Bellaterra
  • W. Joho
    PSI, Villigen
 
  The storage ring ALBA is a 3rd generation synchrotron light source under construction in Barcelona (Spain). The facility is based on a 3.0 GeV storage ring of 268.8 m circumference with a beam emittance under 5 nm.rad. Top-up operation is foreseen from the start. The injector complex for ALBA will consist of a 100 MeV linac and a full energy booster. The linac will be a turn-key system which has already been ordered to the industry and delivery is expected in the second half of 2007. The full energy booster will be placed in the same tunnel as the storage ring and will have a circumference of 249.6 m. The lattice of the booster is a modified FODO lattice providing an emittance as low as 9 nm.rad. The magnet system comprises 40 combined magnets and 60 quadrupoles. Chromaticity correction relies on the sextupole component built-in the combined magnets and the quadrupoles. In this paper a description of the booster design including the present status of the different components will be given.