A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lombardi, A.M.

Paper Title Page
TUPLS057 Linac4, a New Injector for the CERN PS Booster 1624
 
  • R. Garoby, G. Bellodi, F. Gerigk, K. Hanke, A.M. Lombardi, M. Pasini, C. Rossi, E.Zh. Sargsyan, M. Vretenar
    CERN, Geneva
 
  The first bottle-neck towards higher beam brightness in the LHC injector chain is due to space charge induced tune spread at injection in the CERN PS Booster (PSB). A new injector called Linac4 is proposed to remove this limitation. Using RF cavities at 352 and 704 MHz, it will replace the present 50 MeV proton Linac2, and deliver a 160 MeV, 40 mA H beam. The higher injection energy will reduce space charge effects by a factor of 2, and charge exchange will drastically reduce the beam losses at injection. Operation will be simplified and the beam brightness required for the LHC ultimate luminosity should be obtained at PS ejection. Moreover, for the needs of non-LHC physics experiments like ISOLDE, the number of protons per pulse from the PSB will increase by a significant factor. This new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios, which can also become the low energy part of a future 3.5 GeV, multi-megawatt superconducting linac (SPL). The present design has benefited from the support of the French CEA and IN2P3, of the European Union and of the ISTC (Moscow). The proposed machine and its layout on the CERN site are described.  
WEPCH045 Sorting Strategies for the Arc Quadrupoles of the LHC 2017
 
  • Y. Papaphilippou, A.M. Lombardi
    CERN, Geneva
 
  The variation in the field gradient of the LHC arc quadrupoles can not be corrected independently by the dedicated trim quadrupole circuits. This may result to a beta function beating larger than the one accepted by the machine budget. In this respect, sorting strategies for the installation of these magnets were implemented in order to eliminate this effect, as locally as possible. Special care was taken for quadrupoles whose warm measurements showed large gradient errors due to an excessive magnetic permeability. The figures of merit used in the sorting and the results obtained for all 8 sectors of the LHC are detailed. The global optics function beating foreseen, as computed by both analytical estimates and simulations with MAD-X are finally presented.  
WEPCH092 Dynamical Aperture Studies for the CERN LHC: Comparison between Statistical Assignment of Magnetic Field Errors and Actual Measured Field Errors 2128
 
  • M. Giovannozzi, S.D. Fartoukh, S.S. Gilardoni, J.-B. Jeanneret, A.M. Lombardi, Y. Papaphilippou, T. Risselada, R. de Maria
    CERN, Geneva
 
  It is customary to evaluate the performance of a circular particle accelerator by computing the dynamical aperture, i.e., the domain in phase space where bounded single-particle motion occurs. In the case of the LHC the dynamical aperture computation is performed by assuming a statistical distribution of the magnetic field errors of various magnets' classes: the numerical computations are repeated for a given set of realisations of the LHC ring. With the progress in the magnet production and allocation of the available positions in the ring, the statistical approach has to be replaced by the computation of one single configuration, namely the actual realisation of the machine. Comparisons between the two approaches are presented and discussed in details.