A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kulikov, A.

Paper Title Page
MOPLS049 Anomalous High Radiation Beam Aborts in the PEP-II B-factory 652
 
  • M.K. Sullivan, Y. Cai, S. DeBarger, F.-J. Decker, S. Ecklund, A.S. Fisher, S.M. Gierman, S.A. Heifets, R.H. Iverson, A. Kulikov, N. Kurita, S.J. Metcalfe, A. Novokhatski, J. Seeman, K.G. Sonnad, D. Teytelman, J.L. Turner, U. Wienands, D. Wright, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
 
  The PEP-II B-factory at SLAC has recently experienced unexpected beam losses due to anomalously high radiation levels at the BaBar detector. The problem was finally traced to the occurrence of very high pressure (>100 nTorr) spikes that have a very short duration (few seconds). We describe the events and show analysis predicting where in the vacuum system the events originated and describe what was discovered in the vacuum system.  
MOPLS051 Tracking Down a Fast Instability in the PEP-II LER 658
 
  • U. Wienands, R. Akre, S.C. Curry, S. DeBarger, F.-J. Decker, S. Ecklund, A.S. Fisher, S.A. Heifets, A. Krasnykh, A. Kulikov, A. Novokhatski, J. Seeman, M.K. Sullivan, D. Teytelman, D. Van Winkle, G. Yocky
    SLAC, Menlo Park, California
 
  During Run 5, the beam in the PEP-II Low Energy Ring (LER) became affected by a predominantly vertical instability with very fast growth rate of 10…60/ms - much faster than seen in controlled grow-damp experiments - and varying threshold. The coherent amplitude of the oscillation was limited to approx. 1 mm pk-pk or less and would damp down over a few tens of turns; however, beam loss set in even as the measured amplitude damped, causing a beam abort. This led to the conclusion that the beam was actually blowing up. The presence of a 2 nu_s line in the spectrum suggested a possible head-tail nature of the instability, although chromaticity was not effective in raising the threshold. In this paper we will describe the measurements and data taken to isolate and locate the cause of the instability and, eventually, the discovery and fix of the root cause.  
MOPLS045 Achieving a Luminosity of 1034/cm2/s in the PEP-II B-factory 643
 
  • J. Seeman, J. Browne, Y. Cai, W.S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, A. Novokhatski, V. Pacak, M.T.F. Pivi, C.H. Rivetta, M.C. Ross, P. Schuh, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, W. Wittmer, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA, Gif-sur-Yvette
 
  For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has exceeded 1x1034/cm2/s and has delivered an integrated luminosity of 728/pb in one day. PEP-II operates in continuous injection mode for both beams, boosting the integrated luminosity. The peak positron current has reached 2.94 A and 1.74 A of electrons in 1732 bunches. The total integrated luminosity since turn on in 1999 has reached over 333/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.