A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kitamura, H.

Paper Title Page
MOPCH002 Seeding the FEL of the SCSS Phase 1 Facility with the 13th Laser Harmonic of a Ti: Sa Laser Produced in Gas 44
 
  • G. Lambert, M. Bougeard, W. Boutu, P. Breger, B. Carré, D. Garzella, M. Labat, H. Merdji, P. Monchicourt, P. Salieres
    CEA, Gif-sur-Yvette
  • O.V. Chubar, M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • T. Hara, H. Kitamura, T. Shintake
    RIKEN Spring-8 Harima, Hyogo
  • D. Nutarelli
    LAC, Orsay
 
  A seeding configuration, in which the 13th harmonic (60 nm) of a Ti: Sa laser (50 mJ, 10 Hz, 130 fs) generated in a gas cell is used as the external source, will be tested in 2006 on the SCSS test facility (SPring-8 Compact Sase Source, Japan). This facility is based on a thermionic cathode electron gun (1 nC of bunch charge), a C-band LINAC (5712 MHz, 35 MV/m) and two in-vacuum undulators (15 mm of period). The maximum electron beam energy is 250 MeV and the SASE emission from visible to 60 nm can be obtained. The High order Harmonic Generation (HHG) experiment was mounted off-line at the end of last December. A first chamber is dedicated to harmonic generation. A second one is used for spectral selection and adaptation of the harmonic waist in the modulator. The tests are performed in Saclay with the LUCA (Laser Ultra Court Accordable) laser (15 mJ, 10 Hz, 50 fs) from January to March at 266 nm, 160 nm and 60 nm and its results are presented here. Also, before performing the real tests in SPring-8 FEL presence, final theoretical estimations of the performances relying on 1D simulations using PERSEO code and 3D simulations using GENESIS and SRW codes are given.  
THPCH135 65 MEV Neutron Irradiation of ND-FE-B Permanent Magnets 3116
 
  • X.-M. Maréchal, T. Bizen
    JASRI/SPring-8, Hyogo-ken
  • Y. Asano
    JAEA/SPring-8, Hyogo
  • H. Kitamura
    RIKEN Spring-8 Harima, Hyogo
 
  Rare-earth permanent magnets are now playing a major role in accelerator technology, from the development of beam transport systems magnets to their extensive use in synchrotron radiation sources and free electron lasers. Unfortunately, operating in a high radiation environment, rare-earth permanent magnets are subject to demagnetization caused by direct and scattered radiation. The lifetime of these components is therefore a major issue: as a result, the number of studies to clarify the demagnetization mechanism or to test materials of interest for a particular application under specific conditions of irradiation has increased in recent years. However, so far, neutron irradiation experiments have been mainly carried out with reactors, were neutrons have a wide, but mainly low, energy spectrum. We present here the results obtained at the TIARA facility of the Japan Atomic Energy Research Institute, a spalliation source of mono highly energetic neutrons. Four types of Nd-Fe-B permanent magnets (Neomax™ 35EH, 32AH, 27VH and 44H) representing a wide range of characteristics (remanence and coervicity) have been studied.