A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kim, S.-C.

Paper Title Page
TUPCH136 Phase Measurement and Compensation System in PLS 2.5 GeV Linac for PAL-XFEL 1337
 
  • W.H. Hwang, J. Choi, Y.J. Han, J.Y. Huang, H.-G. Kim, S.-C. Kim, I.S. Ko, W.W. Lee
    PAL, Pohang, Kyungbuk
 
  In PAL, We are preparing the 3.7 GeV PALXFEL project by upgrading the present 2.5GeV Linac. In present PLS Linac, the specifications of the beam energy spread and rf phase are 0.6%(peak) and 3.5 degrees(peak) respectively. And the output power of klystron is 80 MW at the pulse width of 4 ? and the repetition rate of 10 Hz. In XFEL, the specifications of the beam energy spread and rf phase are 0.03%(rms) and 0.01 degrees(rms) respectively. We developed an analogue and a digital phase measurement and rf phase compensation system for stable beam quality. This paper describes the microwave system for the PALXFEL and the rf phase measurement and phase compensation system.  
WEPLS132 New Magnet Power Supply for PAL Linac 2685
 
  • S.-C. Kim, J. Choi, K.M. Ha, J.Y. Huang, J.H. Kim, S.H. Kim, I.S. Ko, S.S. Park
    PAL, Pohang, Kyungbuk
 
  Since the completion of PLS in 1994, PLS Linac magnet power supply(MPS) has been operated for 12 years with 12-bit resolution and 0.1% stability. Improvement in the resolution and the reliability of the Linac MPS is highly required now for the stable beam injection and 4th generation light source research. To improve MPS, we developed new compact MPS of 16-bit resolution and 20ppm stability using four-quadrant switching scheme with 50kHz MOSFET switching device. Bipolar MPS for corrector magnet consists of main power board, control power board, regulator board and CPU board. Size of each board is only 100mm width and 240mm depth. Unipolar MPS for quadrupoles and solenoid magnets is composed by parallel-operation of two main power boards, doubling the current output. Output of MPS is 10V, ±10A for the bipolar and 50V, 50A for the unipolar magnet. In this paper, we report on the development and characteristics of the new MPS for PAL linac.  
WEPLS139 Operational Status of Klystron-modulator System for PAL 2.5-GeV Electron Linac 2703
 
  • S.S. Park, J. Choi, J.Y. Huang, S.H. Kim, S.-C. Kim
    PAL, Pohang, Kyungbuk
 
  The klystron-modulator(K&M) system of the Pohang Accelerator Laboratory (PAL) generates high power microwaves for the acceleration of 2.5 GeV electron beams. There are 12 modules of K&M system to accelerate electron beams up to 2.5 GeV nominal beam energy. One module of the K&M system consists of the 200 MW modulator and an 80 MW S-band (2856 MHZ) klystron tube. The total accumulated high-voltage run-time of the oldest unit among the 12 K&M systems has reached nearly 88,000 hours as of December 2005. The overall system availability is well over 95%. In this paper, we review the overall system performance of the high-power K&M system and the operational status of the klystrons and thyratron lifetimes, and the overall system's availability will be analyzed for the period of 1994 to December 2005.  
THPCH120 Development of a General Purpose Power System Control Board 3083
 
  • S.H. Nam, S.-H. Jeong, S.H. Kim, S.-C. Kim, S.S. Park, J.-H. Suh
    PAL, Pohang, Kyungbuk
  • P. Bellomo, R. Cassel, R. Larsen, M.N. Nguyen
    SLAC, Menlo Park, California
 
  As high frequency switching solid state devices are replacing tube devices and linear devices, power systems become more compact and modular. In those systems, it is desirable to have a high quality and multi-function control board per each power system module. In order to maintain reliable operation of the power system module, the control board requires having multiple and complex functions. Moreover, the control board needs to be compact and low power consuming. It also needs to have a fast communication with the main control station. However, there is no such control board available commercially. Therefore, a general purpose power system control board (PSCB) has been under development since 2005 as a collaboration effort between PAL and SLAC. The PSCB is an embedded, interlock supervisory, diagnostic, timing, and set-point control board. It is designed to use in various power systems such as sequenced kicker pulsers, solid state RF modulators, simple DC magnet power supplies, etc. The PSCB has the Ethernet communication with the TCP/IP Modbus protocol. This paper will describe detail functions and preliminary test results of the PSCB.