A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Keller, L.

Paper Title Page
MOPLS060 Design of an Interaction Region with Head-on Collisions for the ILC 682
 
  • J. Payet, O. Napoly, C. Rippon, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Alabau Pons, P. Bambade, J. Brossard, O. Dadoun, C. Rimbault
    LAL, Orsay
  • D.A.-K. Angal-Kalinin, F. Jackson
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • L. Keller, Y. Nosochkov, A. Seryi
    SLAC, Menlo Park, California
 
  An interaction region with head-on collisions is considered an alternative to the baseline configuration of the International Linear Collider, including two interaction regions with finite crossing-angles (2 and 20 mrad). Although more challenging from the point of view of the beam extraction, the head-on scheme is favoured by the experiments because it allows a more convenient detector configuration, particularly in the forward region. The optics of the head-on extraction is revisited by separating the e+ and e- beams horizontally, first by electrostatic separators operated at their LEP nominal field and then using a defocusing quadrupole of the final focus beam line. In this way the septum magnet is protected from the beamstrahlung power. Newly optimized final focus and extraction optics are presented, including a first look at post-collision diagnostics. The influence of parasitic collisions is shown to lead to a region of stable collision parameters. Beam and beamstrahlung photon losses are calculated along the extraction elements. Issues concerning the design of the large bore superconducting final focus magnets, common to both incoming and outgoing beams, are considered.  
MOPLS073 Shower Simulations, Comparison of Fluka, Geant4 and EGS4 718
 
  • L. Fernandez-Hernando
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R.J. Barlow
    UMAN, Manchester
  • A. Bungau
    Cockcroft Institute, Warrington, Cheshire
  • L. Keller
    SLAC, Menlo Park, California
  • N.K. Watson
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  Computer simulations with different packages (Fluka, Geant4 and EGS4) were run in order to determine the energy deposition of an ILC bunch in a spoiler of specified geometry at various depths. The uncertainty in these predictions is estimated by comparison of their results. Various candidate spoiler designs (geometry, material) are studied. These shower simulations can be used as inputs to thermal and mechanical studies using programs such as ANSYS.  
MOPLS077 The 2mrad Crossing Angle Interaction Region and Extraction Line 730
 
  • R. Appleby
    UMAN, Manchester
  • D.A.-K. Angal-Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade, O. Dadoun
    LAL, Orsay
  • J. Carter
    Royal Holloway, University of London, Surrey
  • L. Keller, K. C. Moffeit, Y. Nosochkov, A. Seryi, C.M. Spencer
    SLAC, Menlo Park, California
  • O. Napoly
    CEA, Gif-sur-Yvette
  • B. Parker
    BNL, Upton, Long Island, New York
 
  A complete optics design for the 2mrad crossing angle interaction region and extraction line was presented at Snowmass 2005. Since this time, the design task force has been working on developing and improving the performance of the extraction line. The work has focused on optimising the final doublet parameters and on reducing the power losses resulting from the disrupted beam transport. In this paper, the most recent status of the 2mrad layout and the corresponding performance are presented.