A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Keil, E.

Paper Title Page
TUPLS079 Hadron Cancer Therapy Complex Employing Non-scaling FFAG Accelerator and Fixed Field Gantry Design 1681
 
  • E. Keil
    CERN, Geneva
  • A. Sessler
    LBNL, Berkeley, California
  • D. Trbojevic
    BNL, Upton, Long Island, New York
 
  Non-scaling FFAG rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared with scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must still be crossed. We consider a system of three non-scaling FFAG rings for cancer therapy with 250 MeV protons and 400 MeV/u carbon ions. Hadrons are accelerated in a common RFQ and linear accelerator, and injected into the FFAG rings at v/c=0.1128. The H+/C6+ ions are accelerated in the two smaller/larger rings to 31 and 250 MeV/52.5 and 400 MeV/u kinetic energy, respectively. The lattices consist of symmetrical triplet cells with a straight section for RF cavities. The gantry with similar triplet cells accepts the whole required momentum range at fixed field. This unique design uses either High Temperature super-conductors or super-conducting magnets reducing gantry size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for the specific energy and adapt the beam to specific requirements during treatment.  
WEPCH180 A Dramatically Reduced Size in the Gantry design for the Proton-Carbon Therapy 2352
 
  • D. Trbojevic, R.C. Gupta, B. Parker
    BNL, Upton, Long Island, New York
  • E. Keil
    CERN, Geneva
  • A. Sessler
    LBNL, Berkeley, California
 
  Gantries in the proton/carbon cancer therapy machines represent the major cost and are usually very large. This report explains a new way for the gantry design. The size and cost of the gantries are reduced, and their use is simplified by using the fixed magnetic field. The "new" gantry is made of a very large momentum acceptance non-scaling Fixed Field Alternating Gradient (FFAG) quarter and half arc beam lines. The gantry is made of combined function magnets with a very strong focusing and small dispersion function. Additional magnets with a fast response are required to allow adjustments of the beam position for different energies at the beginning of the gantry. The strong focusing magnets following the gantry have to be adjustable as well to provide the required spot size. The adjustable dipoles provide the radial scanning. The fixed field combined function magnets could be made of small permanent magnets for the proton machine, or of the high temperature superconductors or superconductors for the carbon machine, reducing dramatically the size.