A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Katsuki, K.

 
Paper Title Page
TUOCFI03 RF Cavity with Co-based Amorphous Core 983
 
  • M. Kanazawa, T. Misu, A. Sugiura
    NIRS, Chiba-shi
  • K. Katsuki
    Toshiba, Yokohama
 
  A compact acceleration cavity has been developed with new Co-based amorphous cores, which will be used in a dedicated synchrotron for cancer therapy. This core has high permeability that makes the cavity length short, and the cavity with no tuning system is possible with low Q-value of about 0.5. An acceleration cavity consists of two units that have a single acceleration gap at the center, and at the both side of the gap there are quarter wave coaxial resonators. Considering the requirements for easy operation, a transistor power supply was used instead of commonly used tetrode in the final stage RF amplifier. Each resonator has maximum impedance about 400? at 3MHz, and has been attached with 1:9 impedance transformer. In the frequency range from 0.4 to 8 MHz, the acceleration voltage of more than 4kV can be obtained with total input RF power of 8kW. With these performances, the cavity length is short as 1.5m. In this paper the structure of the cavity and their tested high power performances are presented.  
slides icon Transparencies
TUPCH124 Improvement of Co-based Amorphous Core for Untuned Broadband RF Cavity 1304
 
  • A. Sugiura, M. Kanazawa, T. Misu, S. Yamada
    NIRS, Chiba-shi
  • K. Katsuki, T. Kusaka, K. Sato
    Toshiba, Yokohama
 
  We have developed a cobalt-based amorphous core as a new magnetic-alloy (MA) core for the loaded RF cavity. Because of its permeability found to be approximately twice as high as that of FINEMET, this MA core is an excellent candidate for constructing a compact broadband RF cavity with less power consumption. In this report, we present our recent studies of the Co-based amorphous core's physical properties and performance. Improvement of the new core coated by new materials surface of ribbon is also described.