A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Katsouleas, T.C.

 
Paper Title Page
WEPLS025 Multi-bunch Plasma Wakefield Experiments at the Brookhaven National Laboratory Accelerator Test Facility 0
 
  • P. Muggli, E.K. Kallos, T.C. Katsouleas
    USC, Los Angeles, California
  • M. Babzien, I. Ben-Zvi, K. Kusche, P.I. Pavlishin, I. Pogorelsky, D. Stolyarov, V. Yakimenko
    BNL, Upton, Long Island, New York
  • W.D. Kimura
    STI, Washington
  • F. Zhou
    UCLA, Los Angeles, California
 
  In the plasma wakefield accelerator (PWFA), a short particle bunch or train of bunches drives a large amplitude relativistic plasma wave or wake. The wake has both transverse, focusing fields, and longitudinal fields that can accelerate trailing particles or a trailing bunch. In this experiment conducted at BNL-ATF, a CO2 laser driven IFEL modulates the energy of the 65 MeV, 1.5 ps electron bunch, which after a drift creates a train of bunches approximately 3 fs long, separated by the laser wavelength (10.6 μm or about 30 fs). The largest wake amplitude is reached when the plasma wavelength is equal to the bunch spacing: n=1·1019 e-/cc. In this case, the bunch train drives a wake with an amplitude of approximately 7 GV/m in an ablative capillary discharge plasma. This wake amplitude is much larger than that previously observed with the un-bunched beam*. With this multi-bunch PWFA scheme, the energy of an appropriately phased trailing bunch could be multiplied by a large factor, of the order of the number of drive bunches. Experimental results including plasma density diagnostic using Stark broadening, beam bunching using CTR and energy gain and loss measurements will be presented.

*V. Yakimenko et al., Phys. Rev. Lett. 91, 014802 (2003).

 
WEOAPA01 Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator 0
 
  • P. Muggli, S. Deng, T.C. Katsouleas, E. Oz
    USC, Los Angeles, California
  • D. Auerbach, C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • I. Blumenfeld, F.-J. Decker, P. Emma, M.J. Hogan, R. Ischebeck, R.H. Iverson, N.A. Kirby, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
 
  We have recently demonstrating the excitation of accelerating gradients as large as 30 GV/m* using the ultra-short, 28.5 GeV electron bunches now available at the Stanford Linear Accelerator Center. As a result, the electrons in the back of the bunch gained about 3 GeV over the 10 cm-long plasma with a density of ?2.5x1017 e /cm-3. In recent experiments, energy gains in excess of 10 GeV, by far the largest in any plasma accelerators, have been measured over a plasma length of ?30 cm. Moreover, systematic measurements show the scaling of the energy gain with plasma length and density, and show the reproduceability and the stability of the acceleration process. These are key steps toward the application of beam-driven plasma accelerators or plasma wakefield accelerators (PWFA) to doubling the enregy of a future linear collider without doubling its length. We are preparing for experiments to be performed in February-March 2006 aiming at doubling the energy of the 28.5 GeV beam over a plasma length of less than one meter, a distance two thousand times shorter than the accelerator that created the incoming beam. The latest experimental results will be presented.

*M. J. Hogan et al. Phys. Rev. Lett. 95, 054802, 2005.

 
slides icon Transparencies
WEPCH141 Accelerator Physics Code Web Repository 2254
 
  • F. Zimmermann, R. Basset, E. Benedetto, U. Dorda, M. Giovannozzi, Y. Papaphilippou, T. Pieloni, F. Ruggiero, G. Rumolo, F. Schmidt, E. Todesco
    CERN, Geneva
  • D.T. Abell
    Tech-X, Boulder, Colorado
  • R. Bartolini
    Diamond, Oxfordshire
  • O. Boine-Frankenheim, G. Franchetti, I. Hofmann
    GSI, Darmstadt
  • Y. Cai, M.T.F. Pivi
    SLAC, Menlo Park, California
  • Y.H. Chin, K. Ohmi, K. Oide
    KEK, Ibaraki
  • S.M. Cousineau, V.V. Danilov, J.A. Holmes, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
  • L. Farvacque
    ESRF, Grenoble
  • A. Friedman
    LLNL, Livermore, California
  • M.A. Furman, D.P. Grote, J. Qiang, G.L. Sabbi, P.A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • D. Kaltchev
    TRIUMF, Vancouver
  • T.C. Katsouleas
    USC, Los Angeles, California
  • E.-S. Kim
    PAL, Pohang, Kyungbuk
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. Payet
    CEA, Gif-sur-Yvette
  • T. Sen
    Fermilab, Batavia, Illinois
  • J. Wei
    BNL, Upton, Long Island, New York
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
  In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this web repository, illustrate its usage, and discuss our future plans.