A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Johnson, R.P.

Paper Title Page
TUPCH147 High Pressure RF Cavities in Magnetic Fields 1364
 
  • P.M. Hanlet, M. Alsharo'a, R. E. Hartline, R.P. Johnson, M. Kuchnir, K. Paul
    Muons, Inc, Batavia
  • C.M. Ankenbrandt, A. Moretti, M. Popovic
    Fermilab, Batavia, Illinois
  • D.M. Kaplan, K. Yonehara
    Illinois Institute of Technology, Chicago, Illinois
 
  A study of RF breakdown in pressurized cavities immersed in strong magnetic fields has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 805 MHz test cell is being used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, and beryllium electrodes as functions of hydrogen and helium gas densities and magnetic field strength. These results will be compared to the predicted or known RF breakdown behavior of these metals in vacuum with and without external magnetic fields.  
WEPLS007 A Six-dimensional Muon Beam Cooling Experiment 2409
 
  • R.P. Johnson, M. Alsharo'a, M.A.C. Cummings, M. Kuchnir, K. Paul, T.J. Roberts
    Muons, Inc, Batavia
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  • V.S. Kashikhin, V. Yarba, K. Yonehara
    Fermilab, Batavia, Illinois
 
  Ionization cooling, a method for shrinking the size of a particle beam, is an essential technique for the use of muons in future particle accelerators. Muon colliders and neutrino factories, examples of such future accelerators, depend on the development of robust and affordable ionization cooling technologies. A 6D cooling experiment has been proposed, incorporating a novel configuration of helical and solenoidal magnets in a prototype cooling channel. This Helical Cooling Channel (HCC) experiment is being designed with simulations and prototypes to provide an affordable and striking demonstration that 6D muon beam cooling is understood well enough to enable intense neutrino factories and high-luminosity muon colliders. Because of the large amount of expected beam cooling, helium instead of hydrogen can be used for the initial experiment, avoiding the safety complications of hydrogen. Cryostats are currently being developed using internal heat exchangers for simple, effective and safe hydrogen absorber systems to use in later cooling experiments and real cooling channels. The experimental design choices and corresponding numerical simulations are reviewed.  
WEPLS009 Summary of the Low Emittance Muon Collider Workshop (February 6-10, 2006) 2412
 
  • R.P. Johnson, K. Paul
    Muons, Inc, Batavia
  • V. Yarba
    Fermilab, Batavia, Illinois
 
  The Low Emittance Muon Collider workshop, held at Fermilab February 6-10, 2006 focused on the development of high-luminosity muon colliders using extreme muon beam cooling, where many constraints on muon collider designs are alleviated with beams of smaller emittance and lower intensity. The workshop covered topics related to proton drivers, targetry, muon capture, bunching, cooling, cooling demonstration experiments, bunch recombination, muon acceleration, collider lattices, interaction-point design, site boundary radiation, and detector concepts for energy frontier and Higgs particle studies. Lower emittance allows for a reduction in the required muon current for a given luminosity and also allows high energy to be attained by recirculating the beam through high frequency ILC RF cavities. The highlights of the workshop and the prospects for such colliders will be discussed.  
WEPLS016 Studies of a Gas-filled Helical Muon Beam Cooling Channel 2424
 
  • R.P. Johnson, K. Paul, T.J. Roberts
    Muons, Inc, Batavia
  • Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
  • K. Yonehara
    Fermilab, Batavia, Illinois
 
  A helical cooling channel (HCC) can quickly reduce the six dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. The HCC is composed of solenoidal, helical dipole, and helical quadrupole magnetic fields to provide the focusing and dispersion needed for emittance exchange as the beam follows an equilibrium helical orbit through a continuous homogeneous absorber. We consider liquid helium and liquid hydrogen absorbers in HCC segments that alternate with RF accelerating sections and we also consider gaseous hydrogen absorber in pressurized RF cavities imbedded in HCC segments. In the case of liquid absorber, the possibility of using superconducting RF in low magnetic field regions between the HCC segments may provide a cost effective solution to the high repetition rate needed for an intense neutrino factory or high average luminosity muon collider. In the gaseous hydrogen absorber case, the pressurized RF cavities can be operated at low temperature to improve their efficiency for higher repetition rates. Numerical simulations are used to optimize and compare the liquid and gaseous HCC techniques.  
WEPLS018 Optics for Phase Ionization Cooling of Muon Beams 2430
 
  • R.P. Johnson
    Muons, Inc, Batavia
  • S.A. Bogacz, Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  The realization of a muon collider requires a reduction of the 6D normalized emittance of an initially generated muon beam by a factor of more than 106. Analytical and simulation studies of 6D muon beam ionization cooling in a helical channel filled with pressurized gas or liquid hydrogen absorber indicate that a factor of 106 is possible. Further reduction of the normalized 4D transverse emittance by an additional two orders of magnitude is envisioned using Parametric-resonance Ionization Cooling (PIC). To realize the phase shrinkage effect in the parametric resonance method, one needs to design a focusing channel free of chromatic and spherical aberrations. We report results of our study of a concept of an aberration-free wiggler transport line with an alternating dispersion function. Resonant beam focusing at thin beryllium wedge absorber plates positioned near zero dispersion points then provides the predicted PIC effect.  
WEPLS019 Parameters for Absorber-based Reverse Emittance Exchange of Muon Beams 2433
 
  • R.P. Johnson
    Muons, Inc, Batavia
  • Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  The normalized longitudinal emittance of a muon beam after six-dimensional ionization cooling appears very small compared to the value that could be utilized or maintained after acceleration to muon collider energy. This circumstance offers the possibility for further reduction of the transverse emittance by introducing absorber-based reverse emittance exchange (REMEX) between longitudinal and transverse degrees of freedom before acceleration to high energy. REMEX follows Parametric-resonance Ionization Cooling and is accomplished in two stages. In the first stage the beam is stretched to fill the RF bucket at the initial cooling energy. In the second stage the beam is accelerated to about 2.5 GeV, where energy straggling begins to limit the absorber technique, and stretched again. The potential transverse emittance reduction and the intrinsic limitations of the REMEX technique have been analyzed earlier. In this report, we describe the required beam transport and RF parameters needed to achieve the maximum REMEX effect.  
WEPLS108 High Field Solenoid Magnets for Muon Cooling 2634
 
  • S.A. Kahn, M. Alsharo'a, P.M. Hanlet, R.P. Johnson, M. Kuchnir, D.J. Newsham
    Muons, Inc, Batavia
  • R.C. Gupta, R. Palmer, E. Willen
    BNL, Upton, Long Island, New York
 
  Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in beam lines and accelerators. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS tape based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we will address how to mitigate the high Lorentz stresses associated with this high field magnet.