A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hurdelbrink, U.

Paper Title Page
THPCH084 Control Path of Longitudinal Multibunch-feedback System at HERA-p 2982
 
  • F.E. Eints, S. Choroba, M.G. Hoffmann, U. Hurdelbrink, P.M. Morozov, J. Randhahn, S. Ruzin, S. Simrock
    DESY, Hamburg
 
  A longitudinal broadband damper system to control coupled bunch instabilities has been developed and installed in the proton accelerator HERA-p at the DESY. The control system consists of a control path and a Fast Diagnostic System (FDS) for oscillation diagnostic. The control path consists of FPGA-based digital controller, vector modulator, 1kW power amplifier, kicker-cavity and beam. In the FDS, the bunch phase signals are sampled by a digital FPGA board with 14Bit ADC (controller) with a sampling frequency of 10.4MHz. Phase calculation for all bunches and offset correction will be done by FPGA software which includes a digital filter. The filter has to be able to deal with a slowly changing synchrotron frequency. Here we consider a filter design which treats each of maximum 220 bunches as an independent oscillator which has to be damped. More sophisticated mode filter algorithms may be required to get better noise performance. The FPGA-board output signal modulates a 104 MHz sine-wave. The resulting logitudinal correction kick signal is provided by the kicker-cavity. Beside the technical details we present first operational experience and the actual system performance.  
THPCH085 The Longitudinal Coupled Bunch Feedback for HERA-p 2985
 
  • M.G. Hoffmann, S. Choroba, F.E. Eints, U. Hurdelbrink, P.M. Morozov, J. Randhahn, S. Ruzin, S. Simrock, E. Vogel, R. Wagner
    DESY, Hamburg
 
  A longitudinal broadband damper system to control coupled bunch instabilities has recently been constructed and installed in the 920~GeV proton accelereator HERA-p at the Deutsches Elektronen-Synchrotron DESY. This represents one of the attempts to increase the specific luminosity at HERA by reducing the bunch length. The final bunch length is defined by the initial emittance after injection and by the acceleration process where multiply occuring coupled bunch instabilities provoke bunch length blow up at discrete energies during the ramp. The actual feedback design consists of a fast, high precision bunch centroid phase detector, a 1~kW feedback cavity with 104~MHz centre frequency and 8~MHz bandwidth (FWHM), a I/Q-vector modulator, the low level digital FPGA-board with 14 Bit ADCs and DACs and a cavity transient diagnostics. The system measures the phases of all bunches and calculates corrections in real time (bunch spacing: 96~ns) which are then applied to the beam via a longitudinal kicker. The filter deals with a slowly changing synchrotron frequency (20-80 Hz).