A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hsueh, H.P.

Paper Title Page
THPLS064 Design Concept of the Vacuum System for the 3 GeV Taiwan Photon Source 3433
 
  • G.-Y. Hsiung, C.K. Chan, C.-H. Chang, H.P. Hsueh, T.L. Yang
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
 
  The design concept of the vacuum system for the electron storage ring of the Taiwan Photon Source (TPS), 518.4 m in circumference, is described. The vacuum system for the synchrotron light source not only meets the specifications of an electron beam energy of 3 GeV and a beam current at 400 mA but also provides a safety factor of 1.7 (~ 500 mA) at 3.3 GeV at the upper bound. The vacuum system for the storage ring is built with consideration of the following features: (1) Large aluminum bending chambers to simplify the ultra-high vacuum (UHV) structure; (2) Absorbers located as far from the source as possible to reduce the heat load and associated yield of photon stimulated desorption (PSD) as well as the photoelectron; (3) Vacuum pumps located in the antechamber and closed to the absorbers to increase the localized pumping efficiency and to minimize the impedance of beam ducts; (4) Quantity of flanges and bellows is significantly reduced. Configuration of the pumps, results of the simulation for the pressure and thermal stress, and the criteria of the design will be discussed.  
THPLS065 Optimization for Taiwan Photon Source Electron Beam Position Monitors through Numerical Simulation 3436
 
  • H.P. Hsueh, C.-H. Chang, G.-Y. Hsiung, C.-K. Kuan, T.-S. Ueng
    NSRRC, Hsinchu
  • J.-R. Chen
    NTHU, Hsinchu
 
  One of the key steps toward successfully building the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS), is to optimize the design of the high resolution electron beam position monitors through numerical simulation. With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before actually fabricated and physically tested. The design goal of our high resolution electron beam position monitors is to achieve 0.1 micron resolution if allowed by engineering limitations. The design consideration to achieve this 0.1 micron resolution goal will also be discussed. The first design has been carried out and the correlated simulations were also carried out with MAFIA. The results are presented and discussed here. Sensitivity as high as 200 has been achieved at 500 MHz. Further study will also be described.