A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hofmann, B.

Paper Title Page
TUPLS035 The HITRAP Decelerator Project at GSI 1568
 
  • L.A. Dahl, W. Barth, M. Kaiser, O.K. Kester, H.J. Kluge, W. Vinzenz
    GSI, Darmstadt
  • B. Hofmann, U. Ratzinger, A.C. Sauer, A. Schempp
    IAP, Frankfurt-am-Main
 
  The heavy ion trap (HITRAP) at GSI is a funded project since 2004. Highly charged ions up to U92+ provided by the GSI accelerator facility will be decelerated and subsequently injected into a Penning trap for further cooling almost to rest. A combination of an IH- and an RFQ-structure decelerates the ions from 4 MeV/u down to 6 keV/u. In front of the decelerator a double-drift-buncher-system provides for phase focusing and a final debuncher integrated in the RFQ-tank reduces the energy spread in order to improve the efficiency for beam capture in the cooler trap. The report gives an overview of the final beam dynamic design of the entire decelerator. Besides the construction status of the cavities, particular beam diagnostic features due to the short pulses of 1 μs and 108 MHz bunch frequency, and the measures for technical and controls integration into the existing GSI accelerator complex are presented. Finally the recent time schedule and considerations for commissioning are shown.  
TUPLS041 The HITRAP RFQ Decelerator at GSI 1586
 
  • B. Hofmann, A. Schempp
    IAP, Frankfurt-am-Main
  • O.K. Kester
    GSI, Darmstadt
 
  The HITRAP linac at GSI will decelerate ions from 5 MeV/u to 6 keV/u for experiments with the large GSI Penning trap. The ions, provided by the GSI accelerator facility, will be decelerated at first in the existing experimental storage ring (ESR) down to an energy of 5 MeV/u, and injected into a new IH decelerator and decelerated to 5oo keV/u. The following 4- Rod type RFQ will decelerate the ion beam from 5oo keV to 6 keV/u. The RFQ has been designed and will be built at the Institute for Applied Physics in Frankfurt. The properties of the RFQ decelerator and the status of the project will be discussed.