A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hoffmann, D.

Paper Title Page
TUPLS126 Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators 1798
 
  • N.A. Tahir, D. Hoffmann
    GSI, Darmstadt
  • Y. Kadi, R. Schmidt
    CERN, Geneva
  • R. Piriz
    Universidad de Castilla-La Mancha, Ciudad Real
  • A. Shutov
    IPCP, Chernogolovka, Moscow region
 
  The LHC will operate at 7 TeV with a luminosity of 1034 cm-2s-1. Each beam will have 2808 bunches, with nominal intensity per bunch of 1.1x1011 protons. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since their jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code* while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code**. Our calculations suggest that the LHC beam may penetrate up to 10 m in solid carbon, resulting in a substantial damage of collimators and beam absorbers.

*V. E. Fortov et al. Nucl. Sci. Eng. 123 (1996) 169. **A. Fasso et al. The physics models of FLUKA: status and recent development, CHEP 2003, La Jolla, California, 2003.

 
TUPCH010 Profile Measurement by Beam Induced Fluorescence for 60 MeV/u to 750 MeV/u Heavy Ion Beams 1013
 
  • P. Forck, C. Andre, F. Becker, H. Iwase
    GSI, Darmstadt
  • D. Hoffmann
    TU Darmstadt, Darmstadt
 
  At the planned heavy ion facility FAIR very intense beams of heavy ions will be transported between various synchrotrons and focused on targets for secondary ion productions. For the transverse profile determination only non-destructive methods are suited due to the large deposed beam power. We investigated experimentally the Beam Induced Fluorescence (BIF) method. Due to the atomic collision by the beam ions the residual gas N2 is excited to fluorescence levels. Single photon detection is performed by a double MCP image intensifier coupled to a digital CCD camera. Extensive experimental studies (with the today available lower ion currents) were performed to determine the photon yield and the background contribution for different ion species and beam energies. The measured profiles show a good correspondence to other methods as long as the vacuum pressure by a regulated N2 inlet is below 10-1 mbar. Based on the experimental results, the layout for a BIF profile determination will be discussed.