A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Henke, H.

Paper Title Page
WEPCH110 Calculation of Wake Potentials in General 3D Structures 2170
 
  • H. Henke
    TET, Berlin
  • W. Bruns
    CERN, Geneva
 
  The wake potential is defined as an integration along an axis of a structure. It includes the infinitely long beam pipe regions and in case of numerical evaluation leads to pipe wake artefacts. If the structure is cavity like one can position the integration path on the pipe wall and only the integration over the cavity gap remains. In case of axis-symmetric protruding structures it was proposed by O. Napoly et al. to deform the path such that the integration in the pipe regions is again on the wall. The present paper generalizes this method of path deformation to 3D structures with incoming and outgoing beam pipes. Its usefulness is verified with the code GdfidL and no artifacts were observed.  
WEPCH111 Time Domain Radiation of a Gaussian Charge Sheet Passing a Slit in a Conducting Screen 2173
 
  • M. Filtz, H. Henke
    TET, Berlin
 
  A semi-analytical method is proposed to calculate in time-domain the radiation of a relativistic Gaussian charge sheet travelling parallel to a slotted conducting screen. The method is based on transient line current elements as basis functions which have a triangular time dependence. Making use of duality magnetic current elements are used in the slot region. Radiation fields are shown and the transverse kick received by a test charge is given. The dual problem, the scattering of the fields at a conducting strip, is also treated. The main purpose of the paper is to present an effective algorithm which is easy to implement for computing and visualising plane scattering and diffraction problems in time domain.