A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Heikkinen, S.T.

Paper Title Page
MOPLS128 Status of the Fatigue Studies of the CLIC Accelerating Structures 858
 
  • S.T. Heikkinen, S.T. Heikkinen
    HUT, Espoo
  • S. Calatroni, H. Neupert, W. Wuensch
    CERN, Geneva
 
  The need for high accelerating gradients for the future Compact Linear Collider imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF currents are subjected to cyclic thermal stresses possibly resulting in surface break up by fatigue. Since no fatigue data exists in the literature up to very large numbers of cycles, a comprehensive study has been initiated. Low cycle fatigue data (up to 108 cycles) has been collected by means of a pulsed laser surface heating apparatus. The surface damage has been characterized by SEM observations and roughness measurements. High cycle fatigue data (up to 1011 cycles) at various stress ratios have been collected in high frequency bulk fatigue tests using an ultrasonic apparatus. It is found that the appearance of surface fatigue damage in the laser experiments, and of fatigue cracks in the bulk specimen, happen at similar stress levels for similar numbers of cycles. This allows the two experimental techniques to be connected and to predict the surface damage at a high number of cycles. Up-to-date fatigue data for selected high conductivity, high strength Cu alloys are presented.  
MOPLS128 Status of the Fatigue Studies of the CLIC Accelerating Structures 858
 
  • S.T. Heikkinen, S.T. Heikkinen
    HUT, Espoo
  • S. Calatroni, H. Neupert, W. Wuensch
    CERN, Geneva
 
  The need for high accelerating gradients for the future Compact Linear Collider imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF currents are subjected to cyclic thermal stresses possibly resulting in surface break up by fatigue. Since no fatigue data exists in the literature up to very large numbers of cycles, a comprehensive study has been initiated. Low cycle fatigue data (up to 108 cycles) has been collected by means of a pulsed laser surface heating apparatus. The surface damage has been characterized by SEM observations and roughness measurements. High cycle fatigue data (up to 1011 cycles) at various stress ratios have been collected in high frequency bulk fatigue tests using an ultrasonic apparatus. It is found that the appearance of surface fatigue damage in the laser experiments, and of fatigue cracks in the bulk specimen, happen at similar stress levels for similar numbers of cycles. This allows the two experimental techniques to be connected and to predict the surface damage at a high number of cycles. Up-to-date fatigue data for selected high conductivity, high strength Cu alloys are presented.