A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Harada, H.

Paper Title Page
MOPCH122 Realistic Beam Loss Estimation from the Nuclear Scattering at the RCS Charge-exchange Foil 333
 
  • P.K. Saha, H. Hotchi, Y. Irie, F. Noda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Harada
    Hiroshima University, Higashi-Hiroshima
 
  We have developed simulation tools for the realistic beam loss estimation at the RCS(rapid cycling synchrotron) of J-PARC(Japan Proton Accelerator Research Complex). The present simulation concerns an accurate estimation of the beam loss caused by the nuclear scattering at the charge-exchange foil during the multi turn injection period. It can also figure out the loss point in the ring, so would become very useful for the maintenance and optimization as well. The simulation code GEANT together with the SAD(Strategic Accelerator Design) have been used for the present purpose. In this paper, detail simulation method including the result will be discussed.  
WEPCH128 Virtual Accelerator as an Operation Tool at J-PARC 3 GeV Rapid Cycling Synchrotron (RCS) 2224
 
  • H. Harada, K. Shigaki
    Hiroshima University, Higashi-Hiroshima
  • K. Furukawa
    KEK, Ibaraki
  • H. Hotchi, F. Noda, H. Sako, H. Suzuki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  We developed a virtual accelerator based on EPICS for 3 GeV Rapid-Cycle Synchrotron (RCS) in J-PARC. It is important to have an on-line model of optics parameters, such as tunes, Twiss parameters, dispersion function, at the commissioning stage in a high intensity proton machine. It gives a strong feedback for the RCS operation as a commissioning tool as well as for the studies of beam dynamics issues. Beam position monitors with finite resolutions, a transverse exciter to measure the betatron frequency, and a RF system with variable frequency to simulate off-momentum optics have been implemented into the system. The virtual accelerator system itself and some results of beam dynamics studies will be presented.