A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Guo, J.

Paper Title Page
THPLS079 Bunch Diffusion Measurements at the Advanced Light Source 3466
 
  • F. Sannibale, W.E. Byrne, C.-W. Chiu, J. Guo
    LBNL, Berkeley, California
  • J.S. Hull, O.H.W. Siegmund, A.S. Tremsin, J. Vallerga
    UCB, Berkeley, California
 
  In storage ring based synchrotron light sources, a long beam lifetime is usually a fundamental requirement for a high integrated brightness. The dynamic aperture and the momentum acceptance of lattices are carefully studied and maximized as much as possible for a long lifetime performance. On the other hand, large momentum acceptance and dynamic aperture increase the probability that a particle diffuses from one bunch to another. Diffusion can represent a severe limitation for those experiments where the samples have long relaxation times requiring empty buckets between bunches. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory we have characterized the particle diffusion for the present lattice in order to evaluate its impact on a special user operation dedicated to these long relaxation time experiments and on the incoming top-off injection mode for the ALS.  
THPCH149 Active RF Pulse Compression using Electrically Controlled Semiconductor Switches 3140
 
  • J. Guo, S.G. Tantawi
    SLAC, Menlo Park, California
 
  In this paper, we present the recent results of our research on the ultra-high power fast silicon RF switch and its application on active X-Band RF pulse compression systems. This switch is composed of a group of PIN diodes on a high purity silicon wafer. The wafer is inserted into a cylindrical waveguide operating in the T·1001 mode. Switching is performed by injecting carriers into the bulk silicon through a high current pulse. Our current design uses a CMOS compatible process and the fabrication is accomplished at SNF (Stanford Nanofabrication Facility). The RF energy is stored in a room-temperature, high-Q 400 ns delay line; it is then extracted out of the line in a short time using the switch. The pulse compression system has achieved a gain of 11, which is the ratio between output and input power. Power handling capability of the switch is estimated at the level of 10MW.