A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Glenn, J.

Paper Title Page
MOPCH100 Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes 273
 
  • H. Huang, L. Ahrens, M. Bai, A. Bravar, K.A. Brown, E.D. Courant, C.J. Gardner, J. Glenn, A.U. Luccio, W.W. MacKay, V. Ptitsyn, T. Roser, S. Tepikian, N. Tsoupas, J. Wood, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • F. Lin
    IUCF, Bloomington, Indiana
  • M. Okamura, J. Takano
    RIKEN, Saitama
 
  Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and it is not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results. The effect of horizontal intrinsic resonances in the presence of two partial snakes are also discussed.  
MOPLS023 Status of Fast IR Orbit Feedback at RHIC 589
 
  • C. Montag, J. Cupolo, J. Glenn, V. Litvinenko, A. Marusic, W. Meng, R.J. Michnoff, T. Roser, C. Schultheiss, J.E. Tuozzolo
    BNL, Upton, Long Island, New York
 
  To compensate modulated beam-beam offsets caused by mechanical vibrations of IR triplet quadrupoles at frequencies around 10 Hz, a fast IR orbit feedback system has been developed. We report design considerations and recent status of the system.  
WEPCH063 Measurements and Modeling of Eddy Current Effects in BNL's AGS Booster 2068
 
  • K.A. Brown, L. Ahrens, C.J. Gardner, J. Glenn, M. Harvey, W. Meng, K. Zeno
    BNL, Upton, Long Island, New York
 
  Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the basic lattice parameters of betatron tune and chromaticity. The Booster is capable of operating at ramp rates as high as 8 T/sec. At these ramp rates eddy currents in the vacuum chambers have significant effects on the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the effect of the induced eddy currents. In this report results from measurements of these effects will be presented. Results from modeling and comparisons to the measurements will also be presented.