A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Fischer, W.

 
Paper Title Page
MOPCH134 Electron-impact Desorption at the RHIC Beam Pipes 360
 
  • U. Iriso, U. Iriso
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • W. Fischer
    BNL, Upton, Long Island, New York
 
  The electron induced molecular desorption coefficient of a material provides the number of molecules released when an electron hits its surface. This coefficient changes as a function of the material, energy of the electrons, surface status, etc. In this paper, this coefficient is inferred analyzing electron detector and pressure gauge signals during electron clouds at the Relativistic Heavy Ion Collider (RHIC) beam pipes. The evolution of the electron-impact desorption coefficient after weeks of electron bombardment is followed for both baked and unbaked stainless steel chambers, evaluating the feasibility of the scrubbing effect. Measurements of an energy spectrum during multipacting conditions are shown, and the final results are compared with laboratory simulations.  
MOPLS010 Measurement of Ion Beam Losses Due to Bound-free Pair Production in RHIC 553
 
  • J.M. Jowett, S.S. Gilardoni
    CERN, Geneva
  • R. Bruce
    MAX-lab, Lund
  • K.A. Drees, W. Fischer, S. Tepikian
    BNL, Upton, Long Island, New York
  • S.R. Klein
    LBNL, Berkeley, California
 
  When the LHC operates as a Pb82+ ion collider, losses of Pb81+ ions, created through Bound-free Pair Production (BFPP) at the collision point, and localized in cold magnets, are expected to be a major luminosity limit. With Au79+ ions at RHIC, this effect is not a limitation because the Au78+ production rate is low, and the Au78+ beam produced is inside the momentum aperture. When RHIC collided Cu29+ ions, secondary beam production rates were lower still but the Cu28+ ions produced were predicted to be lost at a well-defined location, creating the opportunity for the first direct observation of BFPP effects in an ion collider. We report on measurements of localized beam losses due to BFPP with copper beams in RHIC and comparisons to predictions from tracking and Monte Carlo simulation.  
MOPLS021 Beam Pipe Desorption Rate in RHIC 583
 
  • H. Huang, W. Fischer, P. He, H.-C. Hseuh, U. Iriso, V. Ptitsyn, D. Trbojevic, J. Wei, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
  Increase of beam intensity in RHIC has caused several decades of pressure rises in the warm sections during operation. This has been a major factor limiting the RHIC luminosity. About 250 meters of NEG coated beam pipes have been installed in many warm sections to ameliorate this problem. Beam ion induced desorption is one possible cause of pressure rises. A series beam studies in RHIC has been dedicated to estimate the desorption rate of various beam pipes (regular and NEG coated) at various warm sections. Correctors were used to generate local beam losses and consequently local pressure rises. The experiment results are presented and analyzed in this paper.  
MOPLS025 Experience in Reducing Electron Cloud and Dynamic Pressure Rise in Warm and Cold Regions in RHIC 595
 
  • S.Y. Zhang, L. Ahrens, J.G. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, R. Connolly, K.A. Drees, W. Fischer, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, R.C. Lee, V. Litvinenko, W.W. MacKay, C. Montag, T. Nicoletti, B. Oerter, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, L. Snydstrup, S. Tepikian, P. Thieberger, D. Trbojevic, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Significant improvement has been achieved for reducing electron cloud and dynamic pressure rise at RHIC over several years; however, there remain to be factors limiting luminosity. The large scale application of non-evaporable getter (NEG) coating in RHIC has been proven effective in reducing electron multipacting and dynamic pressure rise. This will be reported together with the study of the saturated NEG coatings. Since beams with increased intensity and shorter bunch spacing became possible in operation, the electron cloud effects on beam, such as the emittance growth,are an increasing concern. Observations and studies are reported. We also report the study results relevant to the RHIC electron cloud and pressure rise improvement, such as the effect of anti-grazing ridges on electron cloud in warm sections, and the effect of pre-pumping in cryogenic regions.  
MOPLS058 eRHIC - Future Machine for Experiments on Electron-ion Collisions 676
 
  • V. Ptitsyn, J. Beebe-Wang, I. Ben-Zvi, A.V. Fedotov, W. Fischer, W. Graves, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, T. Roser, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
  • D.P. Barber
    DESY, Hamburg
  • W.A. Franklin, R. Milner, B. Surrow, C. Tschalaer, E. Tsentalovich, D. Wang, F. Wang, A. Zolfaghari, T. Zwart, J. van der Laan
    MIT, Middleton, Massachusetts
  • A.V. Otboev, Y.M. Shatunov
    BINP SB RAS, Novosibirsk
 
  The paper presents recent developments for the design of the high luminosity electron-ion collider, eRHIC, proposed on the basis of the existing RHIC machine. The goal of eRHIC is to provide collisions of electrons and positrons on ions and protons in the center-of-mass energy range from 30 to 100 GeV. Lepton beams as well as the beam of protons (and, possibly, light ions) should be polarized. Two independent designs are under development, the so-called 'ring-ring' and 'linac-ring' options. The 'ring-ring' option is based on a 10 GeV electron storage ring. The design issues for the 'ring-ring' option are similar to those at existing B-factories. In the 'linac-ring' option, the electron beam is accelerated in a 10 GeV recirculating energy recovery linac. This option may provide higher luminosities (> 1·1033 cm-2s-1 for e-p collisions), but requires considerable R&D studies for a high current electron polarized source. In order to maximize the collider luminosity, ion ring upgrades, such as electron cooling and ion beam intensity increase, are considered.  
TUXPA02 RHIC Operational Status and Upgrade Plans 905
 
  • W. Fischer
    BNL, Upton, Long Island, New York
 
  Since 2000 RHIC has collided, at 8 energies, 4 combinations of ion species, ranging from gold ions to polarized protons, and including the collisions of deuterons with gold ions. During that time the heavy ion luminosity increased by 2 orders of magnitude, and the proton polarization in store reached 46% on average. Planned upgrades include the evolution to the Enhanced Design parameters by 2008, the construction of an Electron Beam Ion Source (EBIS) by 2009, the installation of electron cooling for RHIC II, and the implementation of the electron-ion collider eRHIC. We review the expected operational performance with these upgrades.  
slides icon Transparencies
WEPCH104 Observation of the Long-range Beam-beam Effect in RHIC and Plans for Compensation 2158
 
  • W. Fischer, R. Calaga
    BNL, Upton, Long Island, New York
  • U. Dorda, J.-P. Koutchouk, F. Zimmermann
    CERN, Geneva
  • A.C. Kabel
    SLAC, Menlo Park, California
  • J. Qiang
    LBNL, Berkeley, California
  • V.H. Ranjibar, T. Sen
    Fermilab, Batavia, Illinois
  • J. Shi
    KU, Lawrence, Kansas
 
  At large distances the electromagnetic field of a wire is the same as the field produced by a bunch. Such a long-range beam-beam wire compensator was proposed for the LHC, and single beam tests with wire compensators were successfully done in the SPS. RHIC offers the possibility to test the compensation scheme with colliding beams. We report on measurements of beam loss measurements as a function of transverse separation in RHIC at injection, and comparisons with simulations. We present a design for a long-range wire compensator in RHIC.  
MOPLS024 RHIC Performance as Polarized Proton Collider in Run-6 592
 
  • V. Ptitsyn, L. Ahrens, M. Bai, D.S. Barton, J. Beebe-Wang, M. Blaskiewicz, A. Bravar, J.M. Brennan, K.A. Brown, D. Bruno, G. Bunce, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, A.V. Fedotov, W. Fischer, G. Ganetis, H. Hahn, T. Hayes, H.-C. Hseuh, H. Huang, P. Ingrassia, D. Kayran, J. Kewisch, R.C. Lee, V. Litvinenko, A.U. Luccio, Y. Luo, W.W. MacKay, Y. Makdisi, N. Malitsky, G.J. Marr, A. Marusic, R.J. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, F.C. Pilat, P.H. Pile, T. Roser, T. Russo, J. Sandberg, T. Satogata, C. Schultheiss, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
  The Relativistic Heavy Ion Collider in Run-6 was operating in polarized proton mode. With two Siberian Snakes per ring, the polarized protons were brought into collisions at 100 Gev and 31.2 Gev energies. The control of polarization orientation at STAR and PHENIX experiments was done using helical spin rotators. Physics studies were conducted with longitudinal, vertical and radial beam polarization at collision points. This paper presents the performance of RHIC as a polarized proton collider in the Run-6 with emphasis on beam polarization and luminosity issues.