A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Erickson, R.A.

Paper Title Page
MOPLS045 Achieving a Luminosity of 1034/cm2/s in the PEP-II B-factory 643
 
  • J. Seeman, J. Browne, Y. Cai, W.S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, A. Novokhatski, V. Pacak, M.T.F. Pivi, C.H. Rivetta, M.C. Ross, P. Schuh, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, W. Wittmer, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA, Gif-sur-Yvette
 
  For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has exceeded 1x1034/cm2/s and has delivered an integrated luminosity of 728/pb in one day. PEP-II operates in continuous injection mode for both beams, boosting the integrated luminosity. The peak positron current has reached 2.94 A and 1.74 A of electrons in 1732 bunches. The total integrated luminosity since turn on in 1999 has reached over 333/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.  
WEPCH061 SABER Optical Design 2062
 
  • R.A. Erickson, K.L.F. Bane, P. Emma, Y. Nosochkov
    SLAC, Menlo Park, California
 
  SABER, the South Arc Beam Experimental Region, is a proposed new beam line facility designed to replace the Final Focus Test Beam at SLAC. In this paper, we outline the optical design features and beam parameters now envisioned for SABER. A magnetic chicane to compress positron bunches for SABER and a bypass line that could transport electrons or positrons from the two-thirds point of the linac to SABER, bypassing the LCLS systems, are also discussed.  
MOPLS066 Direct Measurement of Geometric and Resistive Wakefields in Tapered Collimators for the International Linear Collider 697
 
  • N.K. Watson, D. Adey, M.C. Stockton
    Birmingham University, Birmingham
  • D.A.-K. Angal-Kalinin, C.D. Beard, J.L. Fernandez-Hernando, F. Jackson
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Arnold, R.A. Erickson, C. Hast, T.W. Markiewicz, S. Molloy, M.C. Ross, S. Seletskiy, A. Seryi, Z. Szalata, P. Tenenbaum, M. Woodley, M. Woods
    SLAC, Menlo Park, California
  • R.J. Barlow, A. Bungau, R.M. Jones, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • D.A. Burton, J.D.A. Smith, A. Sopczak, R. Tucker
    Lancaster University, Lancaster
  • C. Densham, G. Ellwood, R.J.S. Greenhalgh, J. O'Dell
    CCLRC/RAL, Chilton, Didcot, Oxon
  • Y.K. Kolomensky
    UCB, Berkeley, California
  • M. Kärkkäinen, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • N. Shales
    Microwave Research Group, Lancaster University, Lancaster
  • M. Slater
    University of Cambridge, Cambridge
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
 
  Precise collimation of the beam halo is required in the ILC to prevent beam losses near the interaction region that could cause unacceptable backgrounds for the physics detector. The necessarily small apertures of the collimators lead to transverse wakefields that may result in beam deflections and increased emittance. A set of collimator wakefield measurements has previously been performed in the ASSET region of the SLAC LINAC. We report on the next phase of this programme, which is carried out at the recently commissioned End Station A test facility at SLAC. Measurements of resistive and geometric wakefields using tapered collimators are compared with model predictions from MAFIA and GdfidL and with analytic calculations.  
MOPLS067 Test Beam Studies at SLAC's End Station A, for the International Linear Collider 700
 
  • M. Woods, C. Adolphsen, R. Arnold, G.B. Bowden, G.R. Bower, R.A. Erickson, H. Fieguth, J.C. Frisch, C. Hast, R.H. Iverson, Z. Li, T.W. Markiewicz, D.J. McCormick, S. Molloy, J. Nelson, M.T.F. Pivi, M.C. Ross, S. Seletskiy, A. Seryi, S. Smith, Z. Szalata, P. Tenenbaum
    SLAC, Menlo Park, California
  • D. Adey, M.C. Stockton, N.K. Watson
    Birmingham University, Birmingham
  • M. Albrecht, M.H. Hildreth
    Notre Dame University, Notre Dame, Iowa
  • W.W.M. Allison, V. Blackmore, P. Burrows, G.B. Christian, C.C. Clarke, G. Doucas, A.F. Hartin, B. Ottewell, C. Perry, C. Swinson, G.R. White
    OXFORDphysics, Oxford, Oxon
  • D.A.-K. Angal-Kalinin, C.D. Beard, J.L. Fernandez-Hernando, F. Jackson, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R.J. Barlow, A. Bungau, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • S.T. Boogert
    Royal Holloway, University of London, Surrey
  • D.A. Burton, J.D.A. Smith, R. Tucker
    Lancaster University, Lancaster
  • W.E. Chickering, C.T. Hlaing, O.N. Khainovski, Y.K. Kolomensky, T. Orimoto
    UCB, Berkeley, California
  • C. Densham, R.J.S. Greenhalgh
    CCLRC/DL, Daresbury, Warrington, Cheshire
  • V. Duginov, S.A. Kostromin, N.A. Morozov
    JINR, Dubna, Moscow Region
  • G. Ellwood, P.G. Huggard, J. O'Dell
    CCLRC/RAL, Chilton, Didcot, Oxon
  • F. Gournaris, A. Lyapin, B. Maiheu, S. Malton, D.J. Miller, M.W. Wing
    UCL, London
  • M.B. Johnston
    University of Oxford, Clarendon Laboratory, Oxford
  • M.F. Kimmitt
    University of Essex, Physics Centre, Colchester
  • H.J. Schriber, M. Viti
    DESY Zeuthen, Zeuthen
  • N. Shales, A. Sopczak
    Microwave Research Group, Lancaster University, Lancaster
  • N. Sinev, E.T. Torrence
    University of Oregon, Eugene, Oregon
  • M. Slater, M.T. Thomson, D.R. Ward
    University of Cambridge, Cambridge
  • Y. Sugimoto
    KEK, Ibaraki
  • S. Walston
    LLNL, Livermore, California
  • T. Weiland
    TEMF, Darmstadt
  • M. Wendt
    Fermilab, Batavia, Illinois
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
 
  The SLAC Linac can deliver to End Station A a high-energy test beam with similar beam parameters as for the International Linear Collider for bunch charge, bunch length and bunch energy spread. ESA beam tests run parasitically with PEP-II with single damped bunches at 10Hz, beam energy of 28.5 GeV and bunch charge of (1.5-2.0)·1010 electrons. A 5-day commissioning run was performed in January 2006, followed by a 2-week run in April. We describe the beamline configuration and beam setup for these runs, and give an overview of the tests being carried out. These tests include studies of collimator wakefields, prototype energy spectrometers, prototype beam position monitors for the ILC Linac, and characterization of beam-induced electro-magnetic interference along the ESA beamline.