A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Emma, P.

 
Paper Title Page
MOPCH048 Linac Coherent Light Source Electron Beam Collimation 148
 
  • J. Wu, D. Dowell, P. Emma, C. Limborg-Deprey, J.F. Schmerge
    SLAC, Menlo Park, California
 
  This paper describes the design and preliminary simulations of the electron beam collimation system in the Linac Coherent Light Source (LCLS) linac. Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from L0-linac exit to FEL undulator entrance, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost on each individual collimator. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.  
MOPCH049 Trajectory Stability Modeling and Tolerances in the LCLS 151
 
  • J. Wu, P. Emma
    SLAC, Menlo Park, California
 
  To maintain stable performance of the Linac Coherent Light Source X-ray Free-electron laser, one has to control undulator trajectory stability to a small fraction of the rms beam size. BPM based feedback loops running at 120 Hz will be effective in controlling jitter at low frequencies less than a few Hz. On the other hand, linac and injector stability tolerances must control jitter at higher frequencies. In this paper, we study the possible sources of such high frequency jitter, including: 1) steering coil current regulation; 2) quadrupole (and solenoid) transverse vibrations; 3) quadrupole (and solenoid) current regulation in presence of typical 200-micron misalignments; 4) charge jitter coupling to RF cavity transverse wakefield due to alignment errors; and 5) bunch length jitter coupling to Coherent Synchrotron Radiation in Chicane. Based on this study, we then set tolerances on each item.  
MOPCH021 FERMI @ Elettra: Conceptual Design for a Seeded Harmonic Cascade FEL for EUV and Soft X-rays 0
 
  • C.J. Bocchetta, E. Allaria, D. Bulfone, P. Craievich, G. D'Auria, M.B. Danailov, G. De Ninno, S. Di Mitri, B. Diviacco, M. Ferianis, A. Gambitta, A. Gomezel, E. Karantzoulis, G. Penco, M. Trovo
    ELETTRA, Basovizza, Trieste
  • J.N. Corlett, W.M. Fawley, S.M. Lidia, G. Penn, A. Ratti, J.W. Staples, R.B. Wilcox, A. Zholents
    LBNL, Berkeley, California
  • M. Cornacchia, P. Emma
    SLAC, Menlo Park, California
  • W. Graves, F.O. Ilday, F.X. Kaertner, D. Wang
    MIT, Middleton, Massachusetts
  • F. Parmigiani
    Università Cattolica-Brescia, Brescia
 
  We present a summary of the conceptual design for the FERMI FEL project funded for construction at the Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FEL's, providing controlled, high peak-power pulses, and complementing the storage ring light source at Sincrotrone Trieste. The facility is to be driven by electron beam from a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac. Designed for an initial complement of two FEL's, providing tunable output over a range from ~100 nm to ~10 nm, FERMI will allow control of pulse duration from less than 100 fs to approximately1 ps, and with polarization control from APPLE undulator radiators. Seeded by tunable UV lasers, FEL-1 is a single-stage of harmonic generation to operate over ~100 nm to ~40 nm, and FEL-2 a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. Photon output is spatially and temporally coherent, with peak power in the 100’s MW to GW range. We have designed FEL-2 to minimize the output radiation spectral bandwidth. Major systems and overal facility layout are described, and key performance parameters summarized.  
MOPCH028 Status of the SPARX FEL Project 107
 
  • C. Vaccarezza, D. Alesini, M. Bellaveglia, S. Bertolucci, M.E. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Migliorati, L. Palumbo, L. Pellegrino, M.A. Preger, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stella, F. Tazzioli, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, F. Broggi, C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • L. Catani, E. Chiadroni, A. Cianchi, C. Schaerf
    INFN-Roma II, Roma
  • S. Cialdi, C. Maroli, V. Petrillo, M. Rome, L. Serafini
    INFN-Milano, Milano
  • F. Ciocci, G. Dattoli, A. Doria, F. Flora, G.P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, P.L. Ottaviani, G. Parisi, L. Picardi, M. Quattromini, A. Renieri, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • P. Emma
    SLAC, Menlo Park, California
  • L. Ficcadenti, A. Mostacci
    Rome University La Sapienza, Roma
  • M. Mattioli
    Università di Roma I La Sapienza, Roma
  • P. Musumeci
    INFN-Roma, Roma
  • S. Reiche, J.B. Rosenzweig
    UCLA, Los Angeles, California
 
  The SPARX project consists in an X-ray-FEL facility jointly supported by MIUR (Research Department of Italian Government), Regione Lazio, CNR, ENEA, INFN and Rome University Tor Vergata. It is the natural extension of the ongoing activities of the SPARC collaboration. The aim is the generation of electron beams characterized by ultra-high peak brightness at the energy of 1 and 2 GeV, for the first and the second phase respectively. The beam is expected to drive a single pass FEL experiment in the range of 13.5-6 nm and 6-1.5 nm, at 1 GeV and 2 GeV respectively, both in SASE and SEEDED FEL configurations. A hybrid scheme of RF and magnetic compression will be adopted, based on the expertise achieved at the SPARC high brightness photoinjector presently under commissioning at Frascati INFN-LNF Laboratories. The use of superconducting and exotic undulator sections will be also exploited. In this paper we report the progress of the collaboration together with start to end simulation results based on a combined scheme of RF compression techniques.  
WEOAPA01 Demonstration of Energy Gain Larger than 10GeV in a Plasma Wakefield Accelerator 0
 
  • P. Muggli, S. Deng, T.C. Katsouleas, E. Oz
    USC, Los Angeles, California
  • D. Auerbach, C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • I. Blumenfeld, F.-J. Decker, P. Emma, M.J. Hogan, R. Ischebeck, R.H. Iverson, N.A. Kirby, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
 
  We have recently demonstrating the excitation of accelerating gradients as large as 30 GV/m* using the ultra-short, 28.5 GeV electron bunches now available at the Stanford Linear Accelerator Center. As a result, the electrons in the back of the bunch gained about 3 GeV over the 10 cm-long plasma with a density of ?2.5x1017 e /cm-3. In recent experiments, energy gains in excess of 10 GeV, by far the largest in any plasma accelerators, have been measured over a plasma length of ?30 cm. Moreover, systematic measurements show the scaling of the energy gain with plasma length and density, and show the reproduceability and the stability of the acceleration process. These are key steps toward the application of beam-driven plasma accelerators or plasma wakefield accelerators (PWFA) to doubling the enregy of a future linear collider without doubling its length. We are preparing for experiments to be performed in February-March 2006 aiming at doubling the energy of the 28.5 GeV beam over a plasma length of less than one meter, a distance two thousand times shorter than the accelerator that created the incoming beam. The latest experimental results will be presented.

*M. J. Hogan et al. Phys. Rev. Lett. 95, 054802, 2005.

 
slides icon Transparencies
WEPCH061 SABER Optical Design 2062
 
  • R.A. Erickson, K.L.F. Bane, P. Emma, Y. Nosochkov
    SLAC, Menlo Park, California
 
  SABER, the South Arc Beam Experimental Region, is a proposed new beam line facility designed to replace the Final Focus Test Beam at SLAC. In this paper, we outline the optical design features and beam parameters now envisioned for SABER. A magnetic chicane to compress positron bunches for SABER and a bypass line that could transport electrons or positrons from the two-thirds point of the linac to SABER, bypassing the LCLS systems, are also discussed.