A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Dovbnya, A.

Paper Title Page
WEPCH051 Isochronous Magneto-optical Structure of the Recirculator SALO 2035
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
 
  With the goal to provide low energy spread of electron beam, the magneto-optical structure of the recirculator SALO has been modified. All of its parts (an injection tract and arcs) were made isochronous and achromatic. Besides, with the purpose of the accelerating structure arrangement, the length of straight sections was enlarged. The amplitude and dispersion functions on various recirculator sections and design characteristics of the beam are submitted.  
WEPCH143 Electron Linac Based e,X-radiation Facility 2257
 
  • V.I. Nikiforov, A. Dovbnya, N.A. Dovbnya, V.L. Uvarov
    NSC/KIPT, Kharkov
 
  In a number of technologies based on high-current electron accelerators bremsstrahlung is generated in the interaction of the beam with the irradiated object. Thus, in addition to the electron radiation, the bremsstahlung may be used for carring out of different technolodgical programs (e,X-facility). A method for the numerical analysis and optimization of the radiation characteristics of such installation is proposed. The accelerator beam track, starting from the electron source and up to output devices is considered as a single multicomponent target consisting of the layers of different materials. The thickness of each layer is measured in the generalized units of the "stopping length". Using the method of simulation based on the PENELOPE/2001 system the characteristics of the mixed e,gamma-radiation field (energy yield of electrons, photons and their ratio) as function of the stopping length for actual or anticipated version of output equipment can be calculated. To illustrate the method, the parameters of the beam path of the NSC KIPT Linacs used as e,X-facilities was analyzed.  
WEPCH177 Conception of Medical Isotope Production at Electron Accelerator 2343
 
  • V.L. Uvarov, N.P. Dikiy, A. Dovbnya, V.I. Nikiforov
    NSC/KIPT, Kharkov
 
  A photonuclear method with the use of high-energy bremsstrahlung (Eg>8 MeV) of high intensity (>= 1004 W/cm2) provides a possibility of the ecologically safe production of a number of isotopes for nuclear medicine. The conditions of generation of the radiation field having such characteristics as well as the features of photonuclear production of W-181,Pd-103, Cu-67 and other radionuclides are considered in the report. At the initial stage the study of the isotope production is performed by means of the computer simulation in a simplified 2D geometry of the Linac output devices. The code on the base of the PENELOPE/2001 program system supplemented with the data on the excitation functions of the corresponding reactions was developed. The dependences of the isotope yield (gross and specific activity) on the electron energy (30…45 MeV), as well as, the data on absorbed energy of radiation in the targets of natural composition are represented. The experimental results confirm the data of modelling. Main trends of realization of the photonuclear method for isotope production and the necessary conditions of the increase of its yield are analysed.  
THPLS075 Progress in Development of Kharkov X-Ray Generator 3457
 
  • A.Y. Zelinsky, V.P. Androsov, E.V. Bulyak, A. Dovbnya, I.V. Drebot, P. Gladkikh, V.A. Grevtsev, Yu.N. Grigor'ev, A. Gvozd, V.E. Ivashchenko, I.M. Karnaukhov, N. Kovalyova, V.P. Kozin, V. Lapshin, V.P. Lyashchenko, V. Markov, N.I. Mocheshnikov, V.B. Molodkin, A. Mytsykov, I.M. Necklyudov, F.A. Peev, O.V. Ryezayev, A.A. Shcherbakov, A. Shpak, V.L. Skirda, V.A. Skomorokhov, Y.N. Telegin, V.I. Trotsenko, O.D. Zvonarjova
    NSC/KIPT, Kharkov
  • A. Agafonov, A.N. Lebedev
    LPI, Moscow
  • J.I.M. Botman
    TUE, Eindhoven
  • R. Tatchyn
    SLAC, Menlo Park, California
 
  Over the past year the design, development and construction of NSC KIPT X-ray generator NESTOR has been in progress. NESTOR is a new type radiation source on the base of Compton scattering and a 40 - 225 MeV electron storage ring. Electrons are injected in the storage ring at 100 MeV and ramped up to final energy 225 MeV. It is supposed that stored electron beam current will be of about 200 mA. Along with use of Nd:Yag laser of 10 W average power which was developed by High-Q laser firm and optical resonator with accumulation gain of about 1000 it allows to provide X-ray radiation flux up to 1011 phot/s. NESTOR is the cooperative facility and is supported both as well Ukrainian government as NATO SfP project #977982. It is supposed that NESTOR will be in operation in the middle of 2007 year. The status of the project and main facility systems are described in the report.