A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

De Santis, S.

Paper Title Page
MOPLS020 Rad-hard Luminosity Monitoring for the LHC 580
 
  • A. Ratti, J.-F. Beche, J.M. Byrd, K. Chow, S. De Santis, P. Denes, B. Ghiorso, H.S. Matis, M. T. Monroy, W.C. Turner
    LBNL, Berkeley, California
  • E. Bravin
    CERN, Geneva
  • P.F. Manfredi
    Pavia University, Engineering faculty, Pavia
  • W. Vandelli
    Pavia University, Pavia
 
  Luminosity measurements at the high luminosity points of the LHC are very challenging due to the extremely high radiation levels in excess of 1 GGy/yr. We have designed an ionization chamber that uses a flowing gas mixture and a combination of metals and ceramics. With such a choice, an additonal challenge is achieving the necessary speed to be able to resolve bunch-by-bunch luminosity data. We present the design, analysis and experimental results of the early demonstration tests of this device.  
TUPCH100 Fiberoptics-based Instrumentation for Storage Ring Longitudinal Diagnostics 1247
 
  • S. De Santis, J.M. Byrd, A. Ratti, M.S. Zolotorev
    LBNL, Berkeley, California
  • Y. Yin
    Y.Y. Labs, Inc., Fremont, California
 
  Many beam diagnostic devices in today's synchrotron rings make use of the radiation emitted by the circulating particles. Such instruments are placed in close proximity of the accelerator, where in many instances they cannot be easily accessed for safety consideration, or at the end of a beamline, which because of its cost, can only move the light port a few meters away from the ring. We present a study on the coupling of synchrotron light into an optical fiber for all those application where the longitudinal properties of the beam are measured (i.e., bunch length, phase, intensity, etc.). By choosing an appropriate fiber it is possible to keep attenuation and dispersion at negligible values over a large bandwidth, so that this method would allow to have the diagnostic instruments directly in the control room, or wherever convenient, up to several hundred of meters away from the tunnel. This would make maintaining and replacing instruments, or switching between them, possible without any access to restricted areas. Additionally, the few components required to be near the ring (lenses and couplers) in order to couple the light into the fiber are intrinsically radiation-hard.  
THPCH066 Transient Beam Loading in the DIAMOND Storage Ring 2937
 
  • S. De Santis, J.M. Byrd
    LBNL, Berkeley, California
  • R. Bartolini
    Diamond, Oxfordshire
 
  Harmonic cavity systems have been installed on several 3rd generation light sources to lengthen the bunches and increase the Touschek lifetime. Apart from this beneficial effect, harmonic cavities are known to increase the transient beam loading in high-current machines, due to the presence of gaps in the fill pattern. The amplitude of this effect, which is substantially larger than that caused by the main RF system, can in turn produce considerable variations in bunch length and phase along the train, which result in a significant reduction of the lifetime increase. We have developed a tracking simulation, which we have applied to the analysis of the beam loading transients in Diamond, for the case of passive superconducting harmonic cavities. The influence of beam current, gap amplitude and harmonic cavity tuning on the final lifetime have been studied, as well as the effects of higher-order modes.  
THPCH067 Coherent Synchrotron Radiation Studies at the Accelerator Test Facility 2940
 
  • S. De Santis, J.M. Byrd
    LBNL, Berkeley, California
  • A. Aryshev, T. Naito, J. Urakawa
    KEK, Ibaraki
  • M.C. Ross
    SLAC, Menlo Park, California
 
  Coherent Synchrotron Radiation (CSR) has been the object of recent experiments and is a topic of great importance for several accelerator currently in their design phase (LCLS, ILC, CIRCE). We present the results of several experimental sessions performed at the Advanced Test Facility - KEK (ATF). An infrared bolometer was used to detect the emitted infrared radiation in the 1-0.05 mm wavelength range as a function of several beam parameters (beam current, RF power, extraction timing, photoinjector laser phase). The beam energy spread was also recorded. We found that the mismatch between injected and equilibrium beam is the source of the coherent signal detected concurrently with the bunch injection.  
THPLS113 Design of a Fast Extraction Kicker for the Accelerator Test Facility 3544
 
  • S. De Santis, A. Wolski
    LBNL, Berkeley, California
  • M.C. Ross
    SLAC, Menlo Park, California
 
  We present a study for the design of a fast extraction kicker to be installed in the Advanced Test Facility ring. The purpose of the project is to test the technologies to be used in the design of the extraction kickers for the ILC damping rings. The kicker's rise and fall times are important parameters in the design of the damping rings, as they limit the minimum distance between bunches and ultimately define a lower boundary for the ring length. We propose a stripline kicker composed of several 20-cm long sections, grouped in two locations in the ATF damping ring. An analytical study of the kicker's parameters and computer simulations using Microwave Studio* point out the strict requirements on the pulsers, in order to be able to satisfy the design parameters.

*http://www.cst.com