A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Conde, M.E.

Paper Title Page
WEPLS039 Developments on a Diamond-based Cylindrical Dielectric Accelerating Structure 2460
 
  • A. Kanareykin, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, Illinois
  • P. Schoessow
    Tech-X, Boulder, Colorado
 
  Developments on a high gradient diamond-based cylindrical dielectric loaded accelerator (DLA) is presented. A diamond-loaded DLA can potentially sustain accelerating gradients far in excess of the limits experimentally observed for conventional metallic accelerating structures. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerators: high RF breakdown level, extremely low dielectric losses and the highest available thermoconductive coefficient. We used the hot-filament Chemical Vapor Deposition (CVD) process to produce high quality 5-10 cm long cylindrical diamond layers. Our collaboration has also been developing a new method of CVD diamond surface preparation that reduces the secondary electron emission coefficient below unity. Special attention was paid to the numerical optimization of the coupling section, where the surface magnetic and electric fields were minimized relative to the accelerating gradient and within known metal surface breakdown limits.