A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Chubar, O.V.

Paper Title Page
MOPCH002 Seeding the FEL of the SCSS Phase 1 Facility with the 13th Laser Harmonic of a Ti: Sa Laser Produced in Gas 44
 
  • G. Lambert, M. Bougeard, W. Boutu, P. Breger, B. Carré, D. Garzella, M. Labat, H. Merdji, P. Monchicourt, P. Salieres
    CEA, Gif-sur-Yvette
  • O.V. Chubar, M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • T. Hara, H. Kitamura, T. Shintake
    RIKEN Spring-8 Harima, Hyogo
  • D. Nutarelli
    LAC, Orsay
 
  A seeding configuration, in which the 13th harmonic (60 nm) of a Ti: Sa laser (50 mJ, 10 Hz, 130 fs) generated in a gas cell is used as the external source, will be tested in 2006 on the SCSS test facility (SPring-8 Compact Sase Source, Japan). This facility is based on a thermionic cathode electron gun (1 nC of bunch charge), a C-band LINAC (5712 MHz, 35 MV/m) and two in-vacuum undulators (15 mm of period). The maximum electron beam energy is 250 MeV and the SASE emission from visible to 60 nm can be obtained. The High order Harmonic Generation (HHG) experiment was mounted off-line at the end of last December. A first chamber is dedicated to harmonic generation. A second one is used for spectral selection and adaptation of the harmonic waist in the modulator. The tests are performed in Saclay with the LUCA (Laser Ultra Court Accordable) laser (15 mJ, 10 Hz, 50 fs) from January to March at 266 nm, 160 nm and 60 nm and its results are presented here. Also, before performing the real tests in SPring-8 FEL presence, final theoretical estimations of the performances relying on 1D simulations using PERSEO code and 3D simulations using GENESIS and SRW codes are given.  
MOPCH005 The ARC-EN-CIEL FEL Proposal 53
 
  • M.-E. Couprie, C. Bruni, O.V. Chubar, A. Loulergue, L. Nahon
    SOLEIL, Gif-sur-Yvette
  • B. Carré, D. Garzella, M. Jablonka, M. Labat, G. Lambert, F. Meot, P. Monot, A. Mosnier
    CEA, Gif-sur-Yvette
  • J.-R. Marquès
    LULI, Palaiseaux
  • D. Nutarelli
    LAC, Orsay
  • J.-M. Ortega
    CLIO/ELYSE/LCP, Orsay
 
  ARC-EN-CIEL (Accelerator-Radiation Complex for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate (1 kHz). Electron beam calculations will be presented. The FEL is based on the injection of High Harmonics Generated in Gases (HHG) in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonics reproduces the good longitudinal and transverse coherence of the harmonics in gas. Calculations are preformed with PERSEO, taking into account the proper transverse overlap between HHG and the electron beam, and with SRW. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron infrared Coherent Synchrotron Radiation sources, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerat  
TUPCH090 Electron Beam Profile Measurements with Visible and X-ray Synchrotron Radiation at the Swiss Light Source 1223
 
  • Å. Andersson, M. Rohrer, V. Schlott, A. Streun
    PSI, Villigen
  • O.V. Chubar
    SOLEIL, Gif-sur-Yvette
 
  Two different methods of beam profile measurements using a) visible-to-UV range synchrotron radiation b) X-ray synchrotron radiation have been realized in a single diagnostics beam line at the Swiss Light Source. While the visible-to-UV part uses a focusing lens to create an image of the electron beam cross section, the X-ray part makes use of the pinhole camera principle. In the visible-to-UV case the vertically polarized synchrotron radiation renders an image heavily influenced by inherent emission and diffraction effects of synchrotron radiation. This turns out to be an advantageous influence in order to determine ultra small beam profiles. For each of the two methods practical point-spread function measurements, including all beam line components, and high-precision wave-optics based calculations (SRW code) of the synchrotron light characteristics were performed to ensure correct interpretation of the measured profiles. Results from both monitors will be presented to allow comparison.  
THPLS118 Status of the SOLEIL Insertion Devices 3556
 
  • F. Briquez, C. Benabderrahmane, P. Berteaud, O.V. Chubar, M.-E. Couprie, L. Dubois, J.-M. Filhol, M. Girault, O. Marcouillé, F. Marteau, M. Massal, F. Paulin, M.V. Valleau, J. Vétéran
    SOLEIL, Gif-sur-Yvette
  • A. Dael
    CEA, Gif-sur-Yvette
 
  SOLEIL is the French 2.75 GeV synchrotron radiation light source of low emittance under construction near Paris. It will provide high intensity photons covering a wide spectral range from the IR to the hard x-rays. The storage ring commissioning will start in April 2006, and the first photons in the beam lines are expected during summer 2006. The first set of Insertion Devices (ID) will be installed before the commissioning or within the first year of operation of the machine. They consist of one 640 mm period and three 256 mm period electromagnetic helical undulators, three 80 mm period Apple II type undulators, and three 20 mm period in-vacuum undulators. All these ID's make use of a wide panoply of technical solutions for generating various types of magnetic fields. Magnetic and conceptual designs were performed by SOLEIL, and the technical realisation was carried out together with the different manufacturers. The design specificities of the different types of ID's and the magnetic field characterisation and optimisation will be reported. The first commissioning on the beam of these undulators will be described.