A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Chae, Y.-C.

Paper Title Page
THPLS076 Status of RF Deflecting Cavity Design for the Generation of Short X-Ray Pulses in the Advanced Photon Source Storage Ring 3460
 
  • G.J. Waldschmidt, M. Borland, Y.-C. Chae, K.C. Harkay, D. Horan, A. Nassiri
    ANL, Argonne, Illinois
 
  The Advanced Photon Source (APS) at Argonne National Laboratory is exploring the possibility of using radio frequency deflection to generate x-ray radiation pulses on the order of 1 pico-second (Delta t - 70%) or less*. This scheme is based on a proposal by A. Zholents et al.** that relies on manipulating the transverse momenta of the electrons in a bunch by using an rf deflecting cavity to induce a longitudinally dependent vertical deflection of the beam. The beam will then travel through a number of undulators before arriving at a second set of deflecting cavities where the deflection is reversed such that the remainder of the storage ring is largely unperturbed***. Considerable effort has been expended on the design of a superconducting rf deflecting cavity operating in the S-Band at 2.8 GHz to address fundamental design issues including cavity geometry, deflecting voltage, rf power coupling, tuning, and damping of higher-order and lower-order modes. In this paper we present simulation results and analysis of an optimized superconducting rf deflecting cavity design for the APS storage ring.

*K. Harkay et al. Proceedings of 2005 PAC, Knoxville, TN, May 2005, p. 668. **A. Zholents et al. Nucl. Instrum. Methods, A425, 385 (1999). ***M. Borland and V. Sajaev. Proceedings of 2005 PAC, Knoxville, TN, May 2005, p. 3886.

 
THPLS112 Electron Multipacting Observation and Simulation in the APS PAR 3541
 
  • C. Yao, Y.-C. Chae
    ANL, Argonne, Illinois
 
  The particle accumulator ring (PAR) has both fundamental and 12th harmonic rf systems. Gap voltage fluctuations were experienced after vacuum work was performed on the PAR during a maintenance period. This has caused intermittent beam instability and prevented us from running the PAR fundamental rf system at normal power level. Our investigation has concluded that the problem was caused by electron multipacting in the center vacuum chamber of the cavity. We were able to suppress the multipacting by applying a solenoid field in the suspected region. Computer simulation is underway in order to find the location and the parameter range of the multipacting. In this paper we report the experimental observations and results of the simulation relevant to the phenomena.