A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Carlson, C.

Paper Title Page
THPCH070 Long-pulse Beam Stability in the DARHT-II Linear-induction Accelerator 2946
 
  • C. Ekdahl, E.O. Abeyta, P.A. Aragon, R. Archuleta, R. Bartsch, K.C.D. Chan, D. Dalmas, S. Eversole, R.J. Gallegos, J. Harrison, E. Jacquez, J. Johnson, B.T. McCuistian, N. Montoya, S. Nath, D. Oro, L.J. Rowton, M. Sanchez, R.D. Scarpetti, M. Schauer
    LANL, Los Alamos, New Mexico
  • H. Bender, W. Broste, C. Carlson, D. Frayer, D. Johnson, A. Tipton, C.-Y. Tom
    Bechtel Nevada, Los Alamos, New Mexico
  • R.J. Briggs
    SAIC, Alamo, California
  • T.P. Hughes, C. Mostrom, Y. Tang
    ATK-MR, Albuquerque, New Mexico
  • M.E. Schulze
    GA, San Diego, California
 
  The beam breakup instability has long been a problem for linear induction accelerators (LIAs). Although it is predicted to saturate in the strong focus regime relevant to LIAs most, if not all, LIAs have had pulse-widths too short to observe this effect. We recently completed BBU experiments on a 1.2 kA, 6.7-MeV configuration of the DARHT-II LIA having a 1600-ns pulse length much longer than the saturation time. The saturated growth observed in these experiments when we reduced the magnetic guide-field strength was in agreement with theory. We used these results to deduce that BBU growth will be insignificant in the final 2-kA, 17-MeV DARHT-II configuration with the tunes that will be used. Another problematic instability for long-pulse LIAs such as DARHT-II is the ion-hose. We also performed experiments with the 6.7-MeV long-pulse configuration of DARHT-II in which we deliberately induced ion-hose by raising the background pressure far above its normal value. The results of these experiments were used to show that ion-hose will not be a problem for to the final DARHT-II configuration.