A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Carli, C.

 
Paper Title Page
MOPCH096 LEIR Lattice 261
 
  • J. Pasternak, P. Beloshitsky, C. Carli, M. Chanel
    CERN, Geneva
 
  The Low Energy Ion Ring (LEIR) is a low energy ion cooling and accumulation ring and serves to compress long ion pulses from Linac 3 into high density bunches suitable for LHC ion operation. Issues of the LEIR lattice are to fulfil all constraints with a small number of quadrupoles and compensations of perturbations due to an electron cooler and gradients seen by the beam in the bending magnets during the ramp. Furthermore, experimental investigations via orbit reponse measurements will be reported.  
MOPLS009 The LHC as a Proton-nucleus Collider 550
 
  • J.M. Jowett, C. Carli
    CERN, Geneva
 
  Following its initial operation as a proton-proton (p-p) and heavy-ion (208Pb82+ - 208Pb82+) collider, the LHC is expected to operate as a p-Pb collider. Later it may collide protons with other lighter nuclei such as 40Ar18+ or 16O8+. We show how the existing proton and lead-ion injector chains may be efficiently operated in tandem to provide these hybrid collisions. The two-in-one magnet design of the LHC main rings imposes different revolution frequencies for the two beams in part of the magnetic cycle. We discuss and evaluate the consequences for beam dynamics and estimate the potential performance of the LHC as a proton-nucleus collider.  
WEOBPA02 LEIR Commissioning 1876
 
  • C. Carli, P. Beloshitsky, L. Bojtar, M. Chanel, K. Cornelis, B. Dupuy, J. Duran-Lopez, T. Eriksson, S.S. Gilardoni, D. Manglunki, E. Matli, S. Maury, C. Oliveira, S. Pasinelli, J. Pasternak, F. Roncarolo, G. Tranquille
    CERN, Geneva
 
  The Low Energy Ion Ring (LEIR) is a central piece of the injector chain for LHC ion operation, transforming long Linac 3 pulses into high density bunches needed for LHC. LEIR commissioning is scheduled to be completed at the time of the conference. A review of LEIR commissioning highlighting expected and unexpected problems and actions to tackle them will be given.  
slides icon Transparencies
WEPCH046 Design and Validation with Measurements of the LEIR Injection Line 2020
 
  • F. Roncarolo, C. Carli, M. Chanel, L.D. Dumas, R. Scrivens
    CERN, Geneva
 
  The CERN Low Energy Ion Ring (LEIR) commissioning started in the year 2005. O4+ and Pb54+ 4.2 MeV/nucleon ion beams are transferred from Linac 3 to LEIR through a low energy transfer line, for which the constraints and the resulting optics design are presented. First trajectory and dispersion measurements agreed only poorly with the theoretical model. Iterations of a refined optics model and further measurements improved the agreement between experimental observations and expectations. In particular, the effect of quadrupolar errors in the line dipole magnets is discussed.