A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Burov, A.V.

Paper Title Page
TUPLS069 Performance of Fermilab's 4.3 MeV Electron Cooler 1654
 
  • A.V. Shemyakin, A.V. Burov, K. Carlson, M. Hu, T.K. Kroc, J.R. Leibfritz, S. Nagaitsev, L.R. Prost, S.M. Pruss, G.W. Saewert, C.W. Schmidt, M. Sutherland, V. Tupikov, A. Warner
    Fermilab, Batavia, Illinois
 
  A 4.3 MeV DC electron beam is used to cool longitudinally an antiproton beam in the Fermilab's Recycler ring. The cooling rate is regulated either by variation of the electron beam current up to 0.5 A or by a vertical separation of beams in the cooling section. The paper will describe steps that provided a stable operation and present the status of the cooler.  
THPCH065 Suppression of Transverse Instability by a Digital Damper 2934
 
  • A.V. Burov, V.A. Lebedev
    Fermilab, Batavia, Illinois
 
  When a beam phase space density increases, it makes its motion intrinsically unstable. To suppress the instabilities, dampers are required. With a progress of digital technology, digital dampers are getting to be more and more preferable, compared with analog ones. Conversion of an analog signal into digital one is described by a linear operator with explicit time dependence. Thus, the analog-digital converter (ADC) does not preserve a signal frequency. Instead, a monochromatic input signal is transformed into a mixture of all possible frequencies, combining the input one with multiples of the sampling frequency. Stability analysis has to include a cross-talk between all these combined frequencies. In this paper, we are analyzing a problem of stability for beam transverse microwave oscillations in a presence of digital damper; the impedance and the space charge are taken into account. The developed formalism is applied for antiproton beam in the Recycler Ring at Fermilab.